2023（令和5）年度

入学者選抜試験問題
－解答•解説

\author{

掲載順【学部共通】
 | 総合型選抜（A 日程） | 試験問題 | 「英語」「数学」「国語」 |
| :--- | :--- | :--- |
| | 解答•解説 「英語」「数学」「国語」 | |
| 一般選抜（A 日程） | 試験問題 | 「英語」「数学」「生物」「国語」 |
| | 解答•解説 「英語」「数学」「生物」「国語」 | |

}

四條㪞学園大学

【学部共通】

総合型選抜選抜（A 日程）試験問題 「英語」「数学」「国語」解答解説 「英語」「数学」「国語」

2023年度（令和 5 年度）入学者選抜試験問題総合型選抜（A 日程）

英 語

＊下記の＜注意事項〉をよく読み，監督者の指示を待ちなさい。

＜注意事項＞

一開始前—
1．試験時間は50分です。監督者の＜開始＞の指示があるまで，この冊子を開けない。
2．解答用紙には解答闌のほかに下記の 3 つの項目欄がある。その説明と解答用紙の「注意事項」
を読み，3項目のすべてに記入またはマークする。

- 受験番号 上段に受験番号を記し，下段にマークする。
- 解答番号 左の枠に英語と漢字で大きく縦書きし，右の欄にマークする。
- 入試区分 総合型選抜（A日程）にマークする。

3．解答用紙に汚れがある場合は，挙手で監督者に知らせる。
4．この表紙の受験番号欄に受験番号を記入する。この冊子は試験終了後に回収する。

一開始後—

1．この問題冊子の問題部分は 8 ページです。開始後確認してページの落丁，乱丁，印刷不鮮明な どがある場合は，挙手で監督者に知らせる。
2．解答はすべて解答用紙の所定の欄へマークによって行う。例えば，と表示のある問いに対して（2）と答える場合は，次の例のように解答番号3の解答欄（2）をマークする。

3．質問などがある場合は，挙手で監督者に知らせる。
4．中途退室は認められない
5．試験終了の合図（監督者の指示）と同時に筆記用具を置く。解答用紙は表向きにして問題冊子 の右において，回収を待つ。次の指示があるまで席を立たない。

第1問 次の日本語の意味になるように，英文の（ ）に当てはまるものを，それぞれ（1）～（4） の中から一つ選び番号をマークせよ。

1．上司の指示があるまでここで待ちます。

I will wait here until my boss（ ）me the instruction．
（1）give
（2）gives
（3）gave
（4）will give

2．歴代の大統領はこのホテルに宿泊したと言われている。

The past presidents are said（ ）at this hotel．
（1）to stay
（2）to staying
（3）to have stayed
（4）to had stayed

3．車が故障してしまったので，迎えを呼ばなくてはならなかった。

My car broke down，so I（ ）for a ride．
（1）had to call
（2）had call to
（3）must called
（4）must have called

4．式場に最初に到着した人は誰ですか？

Who was the first person（ ）at the ceremony hall？
（1）arrive
（2）arrived
（3）to arrive
（4）to be arrived

5．困ったことに私たちには時間がありません。
The problem is（ ）we have no time．
（1）what
（2）when
（3）why
（4）that

6．隣の部屋にはまだ 10 人ほどが待機している。

There are still about 10 people（ ）in the next room．
（1）to wait
（2）waited
（3）waiting
（4）have waited

7．彼の着けている時計は，かなり高額のようだ。

The watch（ ）seems to be quite expensive．
（1）is wearing him
（2）he is wearing
（3）that he wearing
（4）that is wearing him

8．飼っている犬は，一匹が成犬でもう一匹は子犬です。
One of my dogs is an adult and（ ）is a puppy
（1）the other
（2）the one
（3）another
（4）either

9．あなたが外出している間に，トムから電話がありました。
（ ）you were out，Tom called you．
（1）While
（2）During
（3）Among
（4）Between

10．彼女はセーターのリメイクを試みたが不可能だと分かった。

She tried to repurpose the old sweater，（ ）impossible
（1）which she found it
（2）how she found it
（3）that she found it
（4）but she found it

第2問 次の日本語と同じ意味になるように語（語句）を並べたとき，3番目（※）に入るものを，そ れぞれ（1）～（5），（6）の中から一つ選び番号をマークせよ。ただし，文頭に来る語（語句）も小文字になっている。

1．彼女はどのようなことに興味を持っているのだろう。

I wonder \qquad （※） \qquad
（1）she
（2）what
（3）is
（4）in
（5）interested

2．会社の支援がなければ，彼女は優勝することはできなかっただろう
\qquad the company＇s support，she would not have won．
（1）not
（2）for
（3）had
（4）it
（5）been

3．宇宙からみれば，日本は一つの小さな島国でしかない。

Seen from the space， \qquad （※） \qquad
\qquad small island country
（1）more（2）a
（3）is
（4）no
（5）than
（6）Japan

4．我慢できそうもなければ，医者に診てもらったらどうですか？
If you don＇t think you can stand it，why \qquad ？
（1）a（2）see
（3）doctor
（4）don＇t
（5）you

5．このようにして，彼は彼女と知り合ったのです。

This is \qquad
\qquad ．
（1）he
（2）her
（3）to
（4）how
（5）know
（6）got

第3問 次の会話文の（ ）に入る適切な英文を，それぞれ（1）～④）の中から一つ選び番号をマ ークせよ。

1．A ：Thank you for your help．
B ：（ Anytime．
（1）I＇ve had enough．
（2）You＇re welcome．
（3）Behave yourself．
（4）You look great．

2．A ：May I use your bathroom？
B ：（
）
（1）Go ahead．
（2）Well done．
（3）Get on．
（4）Calm down．

3．A ：By the way，are you from Osaka？You sound like from the Kansai region．
B ：Though I went to college in Tokyo，I was born in Kyoto and grew up in Osaka． I live in Kobe now．
A ：No wonder．（ ）
（1）I agree that Kobe is a good place to live in．
（2）My hometown is also Kyoto．
（3）That＇s why you speak standard Japanese．
（4）I hope you like Tokyo．

4．A ：Hi，Yume．Are you eating alone？
B ：Yeah，I am．
A ：Won＇t you join us？
B ：（
（1）Okay，why not？
（2）Okay，what＇s wrong？
（3）Okay，how come？
（4）Okay，which is better？

5．A ：Have you taken the fourth vaccine shot yet？
B ：Not yet，I just got the third one．
But because I＇m elderly，I will need to get the fourth shot．
A ：
）
（1）Yes，it is a new vaccine．
（2）Yes，so either way is fine．
（3）Yes，the same as my mother
（4）Yes，you have already done it

第4問 次の英文を読み，各問に答えよ。

Finland was ranked the happiest country in the world，followed（ $ァ$ ）Denmark，in the ＊World Happiness Report 2022 published on March 18 by a＊U．N．－related organization．
Japan placed 54th among the 146 countries and regions covered by the report，up two notches from last year but still among the lowest in the developed world．

Sho Takano，38，an associate professor at Fukui Prefectural University，（1）cautioned against taking the results＂too seriously as evidence that Japan is an unhappy country．＂
It is difficult to measure happiness．Rankings change depending on the indicators adopted． ${ }^{(2)}$ On top of that，Japanese tend to have a lower＊self－assessment than their Western ＊counterparts，according to Takano．The report is based（ 1 ）how people evaluate their own lives

Takano specializes in research on how to build happy communities．He was inspired to study this field when he worked in Bhutan as an employee of the＊Japan International Cooperation Agency for three years from 2014．He was surprised by（ ウ ）the country surveyed people＇s happiness when he accompanied interviewers．The interviewers spent more than two hours on each individual asking a total of 148 questions．
＂How many people can you turn to for help when you fall ill？＂＂Do you think your family is happy？＂Takano thought it was a great approach．＂The survey provided a process for people to think about（工 ）were precious to them and what were the sources of their happiness，＂he said．But the survey has been suspended because of the＊novel coronavirus pandemic．In Ukraine，numerous civilians are being killed in a merciless war．

We are confronting harsh realities that are threatening to destroy the basic assumptions for discussions on happiness．The United Nations 10 years ago designated March 20 （ オ ）the International Day of Happiness．

While any word we＊utter may sound＊hollow，we should ask ourselves what happiness is． （3）This question is all the more important in this world filled with sorrow．
（https：／／www．asahi．com／ajw／articles／14577760）
＊World Happiness Report 世界幸福度報告書＊U．N．（The United Nations）国連
＊counterparts 対応するもの＊Japan International Cooperation Agency 国際協力機構
＊self－assessment 自己評価＊novel 新たな＊utter 口に出す＊hollow 空虚な

問1 空欄（ ア ）～（ オ ）に入る語を，それぞれ次の（1）～（4）の中から一つ選び，番号をマ ークせよ。

（ア）	（1）by	（2）after	（3）on	（4）to	21
（ イ ）	（1）with	（2）in	（3）on	（4）at	22
（ ゥ ）	（1）which	（2）how	（3）when	（4）what	23
（ エ ）	（1）which	（2）how	（3）that	（4）who	24
（ オ）	（1）as	（2）for	（3）to	（4）on	25

問 2 下線部（1）の日本語として最も適切なものを，次の（1）～（4）の中から一つ選び，番号をマーク せよ。
cautioned against taking the results＂too seriously as evidence that Japan is an unhappy country．＂
（1）この結果を日本が不幸な国であることの証として，極めて深刻に受け止めるべきであると注意を促した。
（2）この結果を日本が不幸な国であることの証として，真に受けないようにと注意を促した。
（3）日本が不幸な国である結果は深刻なこととして，少なからず受け止めなければならないと注意を促した。
（4）日本が不幸な国である結果は深刻なことであっても，過度な受け止めかたをしてはならな いと注意を促した。

問 3 下線部（2）On top of that の意味に最も近い語句を，次の（1）～（4）の中から一つ選び，番号を マークせよ。
（1）Instead of that
（2）As a result
（3）In addition to that
（4）Even so

問 4 下線部（3）の日本語として最も適切なものを，次の（1）～（4）の中から一つ選び，番号をマーク せよ。
This question is all the more important in this world filled with sorrow．
（1）この問いは，悲しみに満ちたこの世界がさらに必要とするものである。
（2）この問いのすべてが，悲しみに満ちたこの世界にさらに必要なものである。
③ 悲しみに満ちたこの世界において，この問いはより重要である。
（4）悲しみに満ちたこの世界におけるこの問いは，すべてにおいて重要である。

問 5 英文の内容に合うものを，次の（1）～（6）の中から二つ選び，番号をマークせよ。
（1）日本の幸福度ランキングは，先進国の中で 2 ランクアップした。
（2）日本人の自己評価は，欧米人に比べて低い傾向にある。
（3）タカノ教授の専門は，豊かな国際社会をつくるための研究である
（4）幸福度を測ることはそれほど難しいことではない。
（5）ブータンでの調査は，幸せの源について問うものがあった。
（6）ウクライナでの戦争は幸福に係る議論の大前提を崩した。

2023 年度（令和 5 年度）入学者選抜試験問題
 総合型選抜（A 日程）

数 学

＊下記のく注意事項〉をよく読み，監督者の指示を待ちなさい。

＜注意事項〉

－開始前一

1．試験時間は 50 分です。監督者の＜開始＞の指示があるまで，この冊子を開けない。
2．解答用紙には解答闌のほかに下記の 3 つの項目欄がある。その説明と解答用紙の「注意事項」 を読み，3項目のすべてに記入またはマークする。
受験番号 上段に受験番号を記し，下段にマークする。

- 解答番号 左の枠に数学と漢字で大きく縦書きし，右の欄にマークする
- 入試区分 総合型選抜（A日程）にマークする。

3．解答用紙に汚れがある場合は，挙手で監督者に知らせる。
4．この表紙の受験番号欄に受験番号を記入する。この冊子は試験終了後に回収する。

一開始後一

1．この問題冊子の問題部分は 5 ページです。開始後確認してページの落丁，乱丁，印刷不鮮明な どがある場合は，挙手で監督者に知らせる。
2．解答はすべて解答用紙の所定の欄ヘマークによって行う。
3．解答をはじめる前に，冒頭のページに書かれた「解答上の注意」を読む。
4．数学の計算は，各問題の次のページに用意した「計算用紙」を用いる。
5．質問などがある場合は，挙手で監督者に知らせる。
6．中途退室は認めない。
7．試験終了の合図（監督者の指示）と同時に筆記用具を置く。解答用紙は表向きにして問題冊子 の右において，回収を待つ。次の指示があるまで席を立たない。

解答はすべて解答用紙の所定の欄にマークしなさい。

問題の文中の \qquad
\qquad などには，特に指示がない限り，数字（ $0 \sim 9$ ），符号（ - ，\pm ）の いずれかが入ります。ア，イ，ウ，•・の一つ一つが，これらのいずれか一つに対応します。それらを解答用紙のア，イ，ウ，‥で示された解答闌にマークして答えなさい。
なお，解答用紙に 3 つある解答欄の左肩の数字は，それぞれ大問の番号を表す。

例1 アイウに－83と答えたいとき。

分数形で解答する場合は，既約分数で答えなさい。符号は分子につけ，分母につけてはいけません。

例2
 に－$\frac{4}{5}$ と答えたいときは，$\frac{-4}{5}$ として答えなさい。

1												
4						4	5					
\pm		θ	0	（2）	（3）	（4）	（5）	（6）		8		
${ }^{5}$		$\theta \theta$	0	（2）	（3）	1	（5）	6	0	8		
		$\theta \otimes$	0	（2）	（3）	（4）		（6）		8		

問題は次のページからです。

$$
1 \text { ページ ~ } 5 \text { ページ }
$$

第2問 以下の問いに答えよ。

第1問 以下の問いに答えよ。
（1）$(x-1)(x-2)(x+3)(x-6)+84$ を因数分解すると，

（2）$x=4+\sqrt{15}$ のとき，次の式の值を求めよ。

$$
\begin{aligned}
& x^{2}-8 x=\text { カキ }, x^{4}-16 x^{3}+65 x^{2}-8 x+4=\square \text { ク } \\
& \frac{2}{x}-4 x=- \text { ケ }-\square \sqrt{15}
\end{aligned}
$$

（3）連立不等式

$$
\left\{\begin{array}{l}
x^{2}-6 x-50<2 x+15 \\
|x-2| \geqq 4
\end{array}\right.
$$

を解くと，

（4） 1 から 100 までの自然数全体の中で，

$$
\begin{aligned}
& 2 \text { かつ } 3 \text { かつ } 7 \text { で割り切れる数は タ 個 } \\
& 2 \text { または } 3 \text { または } 7 \text { で割り切れる数は チツ 個 } \\
& 42 \text { と互いに素である数は テト 個 }
\end{aligned}
$$

（1） 2 次関数 $y=-2 x^{2}+8 a x-6 a^{2}-11 a+14$ のグラフを C とする。 ただし，a は定数とする。このとき，次の設問に答えよ。
i） C の頂点の座標は，$\quad\left(\square a, \quad\right.$ ア $\left.a^{2}-11 a+14\right)$
ii） C の頂点が第 1 象限にあるときの a の値の笔囲は，

iii）$a<0$ のとき， $0 \leqq x \leqq 2$ における C の最大値，最小值をそれぞれ M, m とすると M ，m の値は，

iv）$a<0$ のとき，iii）の M, m に対して $\mathrm{M}-2 m=47$ を満たすような a の値は，

$$
a=-\frac{\begin{array}{|c|}
\hline \text { シ } \\
\hline \text { ス } \\
\hline
\end{array} ~}{\text { K }}
$$

v） C を原点に関して対称移動したグラフを C^{\prime} とするとき， C^{\prime} と直線 $y=-2$ が共有点をもたないような a の値の範囲は，

第3問 以下の問いに答えよ。

（2）次のデータは，あるクラスの生徒 10 人に対して実施したテスト（ 20 点満点）の得点を表している。ただし，a は定数である。
$10,14, a, 17,10,15,18, a+5,13,10$（点）
このデータの平均値を計算すると 12 （点）であった。

このとき，次の設問に答えよ。
i）a の値は

ii）このデータの四分位範囲は \square
iii）このデータの分散は テト
（1）円Oに内接する四角形 ABCD において，
$\mathrm{AB}=8, \mathrm{BC}=15, \mathrm{CD}=8$,
$\angle \mathrm{ADC}=120^{\circ}$ とし，辺 AB, CD を
延長した交点をEとする。
このとき，次の設問に答えよ。

i）対角線 AC および辺 AD の長さは，
$\mathrm{AC}=$ \square ， $\mathrm{AD}=$ \square
ii）円 O の半径 R の値は，

iii）四角形 ABCD の面積 S の値は，

iv）$\triangle \mathrm{ABC}$ の内接円の半径 r の値は，

v）線分EA，EDの長さは，

$\mathrm{ED}=\boldsymbol{\pi}$
（2） 1 から 8 までの 8 個の数字がそれぞれ 1 個ずつ書かれた 8 個の球を円形に並べるものとする
このとき，次の設問に答えよ。
i）1，2， 3 の 3 個の球が隣り合って並ぶ確率は $\frac{\square}{\square \text { セ }}$
ii）4，5の 2 個の球が向かい合って並ぶ確率は $\frac{\text { タ }}{\text { チ }}$
iii）奇数の球と偶数の球が交互に並ぶ確率は \square

2023年度（令和 5 年度）入学者選抜試験問題総合型選抜（A 日程）

問題は次のページからです。

$$
1 \text { ページ ~ } 13 \text { ページ }
$$

国 語
＊下記の＜注意事項〉をよく読み，監督者の指示を待ちなさい。

＜注意事項＞

一開始前一
1．試験時間は50分です。監督者の＜開始＞の指示があるまで，この冊子を開けない。
2．解答用紙には解答欄のほかに下記の 3 つの項目欄がある。その説明と解答用紙の「注意事項」 を読み，3項目のすべてに記入またはマークする。
受験番号 上段に受験番号を記し，下段にマークする。
解答番号 左の枠に国語と漢字で大きく縦書きし，右の欄にマークする。
－入試区分 総合型選抜（A日程）にマークする。
3．解答用紙に汚れがある場合は，挙手で監督者に知らせる。
4．この表紙の受験番号欄に受験番号を記入する。この冊子は試験終了後に回収する。

一開始後一

1．この問題冊子の問題部分は 13 ページです。開始後確認してページの落丁，乱丁，印刷不鮮明な どがある場合は，挙手で監督者に知らせる。
2．解答はすべて解答用紙の所定の欄ヘマークによって行う。例えば， 3 と表示のある問いに対して（2）と答える場合は，次の例のように解答番号3の解答欄（2）をマークする。

3．質問などがある場合は，挙手で監督者に知らせる。
4．中途退室は認められない。
5．試験終了の合図（監督者の指示）と同時に筆記用具を置く。解答用紙は表向きにして問題冊子 の右において，回収を待つ。次の指示があるまで席を立たない。

〔（还回）	舜阳山	
	Θ 早	
	（6）＋	
	（6）区	区其留知幵 6°
〔正代〕	工员䱈	
	$\Theta{ }^{\text {rax}}$	
	（c）${ }^{\text {\＃}}$	
	（6）乪	
〔吅れく〕	ミャッ3	
	Θ \＆	
	（c）	
	（6）	
（足》）		
	Θ 䐆	
	（¢）䠔	
	（6）渮	

[^0]| | |
| :---: | :---: |
| 〔䃌1〕 | 由相化过 |
| | |
| | |
| | |
| 〔區け〕 | きヨ |
| | |
| | |
| | |
| 〔退11］ | |
| | |
| | |
| | |

[^1]

〔臨困〕	 \square へ
	（6）－－
〔朢れ〕	
	細如細吅
〔嘔中〕	

㓊

（1）

英 語

算1間

1．上司の指示があるまでここで待ちます。（2）gives
I will wait here until my boss（ ）me the instruction
until で導かれる「時を表す副詞節」は未来のことでも現在時制を使う

2．歴代の大統領はこのホテルに宿泊したと言われている。（3）to have stayed
The past presidents are said（ ）at this hotel．
「言われている」のは現在だが「泊まった」のは過去。be said to 以降が過去の場合は have done。

3．車が故障してしまったので，迎えを呼ばなくてはならなかった。（1）had to call
My car broke down，so I（ ）for a ride．
must の過去形はないので must＝have to を利用し，have の過去形•had を使う

4．式場に最初に到着した人は誰ですか？（3）to arrive
Who was the first person（ ）at the ceremony hall？ the first person が to arrive の主語。不定詞の形容詞的用法。

5．困ったことに私たちには時間がありません。（4）that
The problem is（ ）we have no time．
the problem is（that）～「困ったことに（問題は）～である」 名詞節を導く接続詞「that」。

6．隣の部屋にはまだ 10 人ほどが待機している。（3）waiting
There are still about 10 people（ ）in the next room．
there be＋S＋doing 「Sが～している」

7．彼の着けている時計は，かなり高額のようだ。（2）he is wearing
The watch（ ）seems to be quite expensive．
目的格関係代名詞 which が the watch の後ろに省略されている。

8．飼っている犬は，一匹が成犬でもう一匹は子犬です。（1）the other
One of my dogs is an adult and（ ）is a puppy．
one \sim the other •••「（2つのうち） 1 つは～，残りの 1 つは・••

9．あなたが外出している間に，トムから電話がありました。（1）While
）you were out，Tom called you．
while～「～の間に」 時を示す接続詞。

10．彼女はセーターのリメイクを試みたが不可能だと分かった。（4）but she found it She tried to repurpose the old sweater，（ ）impossible． it のない which she found ならば可。which は sweater を修飾しているので，which の後には主語が来ない。

第 2 問

1．彼女はどのようなことに興味を持っているのだろう。（3）is
I wonder［what she is interested in］
I wonder 以下は間接疑問 I wonder what＋S＋V

2．会社の支援がなければ，彼女は優勝することはできなかっただろう。（1）not
［Had it not been for］the company＇s support，she would not have won．
if it had not been for～「（もし）～がなかったら」から if の省略と倒置がされた形。
3．宇宙からみれば，日本は一つの小さな島国でしかない。（4）no
Seen from the space，［Japan is no more than a］small island country
no more than～\sim～（で）しかない」

4．我慢できそうもなければ，医者に診てもらったらどうですか？（2）se If you don＇t think you can stand it，why［don＇t you see a doctor］？
why don’t you do？「～してはどうですか？」

5．このようにして，彼は彼女と知り合ったのです。（6）got
This is［how he got to know her］．
this is how～「このようにして～」

第 3 問
1．（2）
A：お手伝いいただき，ありがとうございました。
B ：（
（1）十分です。
（2）どういたしまして
（3）お行儀よくね。
（4）元気そうですね

2．（1）
A：トイレをお借りしてもよいでしょうか？
B ：
（1）どうぞ。
（2）よくやった
（3）乗りなさい。
（4）落ち着いて。

3．（2）
A：ちなみに，大阪の方ですか？関西の人みたいだけど。
B ：大学は東京だけど，生まれは京都で，育ちは大阪です。
A：どうりで。（ ）
（1）神戸が住みやすいのは同感です
（2）私も故郷は京都です。
（3）だから標準語なんですね。
（4）東京を気に入ってもらえればよいのですが。

4．（1）
A：こんにちは，ユメ，一人で食べてるの？
B：ええ，そうよ。
A：一緒にどう？
B：（ ）
（1）OK，いいですね（喜んで）。「どうして（そう）しないの？」という意味の表現。
（2）OK，何が問題？
（3）OK，なぜ？
（4）OK，どちらがいい？

5．（3）
A：もう 4 回目のワクチンを打ちましたか？
B：まだです，3回目を打ったばかりだから。
でも私は高齢者だから，4回目の接種を受ける必要があるね。
A：（
（1）はい，それって新しいワクチンですね。
（2）はい，だからどちらも間違いありません。
（3）はい，私の母と同様です。
（4）はい，もうしたんですね。

第4問【全訳】
国連関連機関が 3 月 18 日に発表した「世界幸福度報告書 2022 」で，世界で最も幸福な国としてフィ ンランドが第 1 位となり，デンマークがそれに続いた。
日本は対象となった 146 の国と地域のうち 54 位で，昨年より 2 ランク上昇したが，先進国中最下位し ベルのままだ。

福井県立大学の高野翔准教授（38歳）は，この結果を「日本が不幸な国である証としてあまり深刻に受け取らないように警告している。
幸福度を測るのは難しい。採用される指標によって順位が変わってくる
その上，高野によると日本人は西洋人に比べて自己評価が低い傾向にある。その報告書は，人々が自分自身の人生をどのように評価するかに基づいているのだ。
高野は幸せな地域社会を築く方法の研究を専門としている。彼は 2014 年から 3 年間，日本国際協力機構の職員としてブータンで勤務した時に，この分野の研究のきっかけを得た。彼が取材者に同行した際，国がどのように人々の幸福度を調査しているのかに驚いた。取材者は 1 人に対して 2 時間以上かけ計 148 の質問をしたのだ。

「病気になったとき，何人の人に助けを求めることができますか？」「あなたの家族は幸せだと思い ますか？」 高野は，素晴らしい取り組み方だと思った。「その調査は，自分にとって大切な人は誰か，幸 せの源は何かを考えるプロセスを人々に提供していた」と彼は述べた。しかし新型コロナウイルスの大流行により，その調査は中断されている。ウクライナでは，無慈悲な戦争で多数の民間人が殺されてい る。

私たちは，幸福に関する議論の基本的前提を崩す恐れのある厳しい現実に直面している。10年前，国連は3月20日を「国際幸福デー」と定めた。

どんな言葉を使っても虚しく聞こえるかもしれないが，私たちは「幸せとは何か」を自らに問うべき だ。悲嘆に満ちたこの世界において，この問い掛けはますます重要になっている。

問 1

ア ）	（1）by	followed by	「～に続いて」
ィ ）	（3）on	is based on	「～に基づいて」
ウ ）	（2）how	「～のやり方	～の様子」
エ ）	（4）who	「誰が～なの	」後続の what
（オ）	（1）as	「～として」	

問2（2）
cautioned against taking the results＂too seriously as evidence that Japan is an unhappy country．＂
（1）この結果を日本が不幸な国であることの証として，極めて深刻に受け止めるべきであると注意を促した。
（2）この結果を日本が不幸な国であることの証として，真に受けないようにと注意を促した。
（3）日本が不幸な国である結果は深刻なこととして，少なからず受け止めなければならないと注意を促した。
（4）日本が不幸な国である結果は深刻なことであっても，過度な受け止めかたをしてはならないと注意を促した。
\rightarrow cautioned against「注意喚起する」 taking the results「結果を受け止める」
too seriously「あまりに～すぎる」この文脈では，「結果をあまりに真剣に受け止めすぎないよう に注意した」という意味で使われている。

問3 On top of that 「それに加えて」（3）

（1）Instead of that	「その代わり」
（2）As a result	「その結果」
（3）In addition to that	「それに加えて」
（4）Even so	「それにしても」

問 4 （3）
This question is all the more important in this world filled with sorrow．
（1）この問いは，悲しみに満ちたこの世界がさらに必要とするものである。
（2）この問いのすべてが，悲しみに満ちたこの世界にさらに必要なものである。
③ 悲しみに満ちたこの世界において，この問いはより重要である。
（4）悲しみに満ちたこの世界におけるこの問いは，すべてにおいて重要である。
\rightarrow all the more important「ますます重要である」という強調する表現。

問5（2）（5）
（1）\times 日本の幸福度ランキングは，先進国の中で 2 ランクアップした。
still among the lowest in the developed world 「先進国の中では最下位レベル」
（2）○日本人の自己評価は，西洋人に比べて低い傾向にある
（3）\times タカノ教授の専門は，豊かな国際社会をつくるための研究である。
research on how to build happy communities 「幸せな地域社会を築く方法の研究」
（4）\times 幸福度を測ることはそれほど難しいことではない。
It is difficult to measure happiness．「•••難しい」としている。
（5）$○$ ブータンでの調査は，幸せの源について問うものがあった。
⑥ \times ウクライナでの戦争は幸福に係る議論の大前提を崩した。
\rightarrow We are confronting harsh realities that are threatening to destroy the basic assumptions for discussions on happiness．「～議論の基本的前提が破壊される恐れがある厳しい現実に直面してい る」ので，まだ破壊されたわけではない

第1問

（1）$(x-1)(x-2)(x+3)(x-6)+84=\left(x^{2}-3 x+2\right)\left(x^{2}-3 x-18\right)+84$

$$
\begin{aligned}
& =(\mathrm{X}+2)(\mathrm{X}-18)+84\left(\mathrm{X}=x^{2}-3 x \text { とおく }\right) \\
& =\mathrm{X}^{2}-16 \mathrm{X}+48=(\mathrm{X}-4)(\mathrm{X}-12) \\
& =\left(x^{2}-3 x-4\right)\left(x^{2}-3 x-12\right) \\
& =\left(x+\frac{1}{ア}\right)\left(x-\frac{4}{\text { T }}\right)\left(x^{2}-\underset{\text { ウ }}{3} x-\underset{\text { エオ }}{12}\right)
\end{aligned}
$$

（2）$x=4+\sqrt{15}$ より $x-4=\sqrt{15}$ ，両辺を 2 乗して，$(x-4)^{2}=15 \Leftrightarrow x^{2}-8 x=\underset{\text { 力 }}{-1}$

$$
\begin{aligned}
x^{2}-8 x=-1 \text { より, } x^{4}-16 x^{3}+65 x^{2}-8 x+4 & =\left(x^{2}-8 x\right)^{2}+\left(x^{2}-8 x\right)+4 \\
& =(-1)^{2}+(-1)+4=4
\end{aligned}
$$

$$
\frac{2}{x}-4 x=\frac{2}{4+\sqrt{15}}-4(4+\sqrt{15})=\frac{2(4-\sqrt{15})}{(4+\sqrt{15})(4-\sqrt{15})}-4(4+\sqrt{15})
$$

$$
=2(4-\sqrt{15})-4(4+\sqrt{15})=8-2 \sqrt{15}-16-4 \sqrt{15}=-\frac{\sqrt{8}}{ケ}-\frac{6}{\square} \sqrt{15}
$$

（3）$x^{2}-6 x-50<2 x+15 \Leftrightarrow x^{2}-8 x-65<0 \Leftrightarrow(x+5)(x-13)<0$

$$
\Leftrightarrow-5<x<13-(1)
$$

$|x-2| \geqq 4 \Leftrightarrow x-2 \leqq-4, \quad 4 \leqq x-2 \Leftrightarrow x \leqq-2, \quad 6 \leqq x$－（2）
よって，求める連立不等式の解は，（1）かつ（2）より

（4） 1 から 100 までの自然数全体の中で，
2 の倍数は 50 個， 3 の倍数は 33 個， 7 の倍数は 14 個 2 かつ 3 の倍数は 16 個， 3 かつ 7 の倍数は 4 個， 2 かつ 7 の倍数は 7 個， 2 かつ 3 かつ 7 の倍数は 2 個

よって，
2 かつ 3 かつ 7 で割り切れる数は 名 2 個
2 または 3 または 7 で割り切れる数は 72 個
$50+33+14-16-4-7+2=72$（個）
42 と互いに素である数は テト
42 と互いに素である数
॥
2，3， 7 のいずれでも割り切れない数 $100-72=28$（個）

第 2 問

（1）i）$y=-2 x^{2}+8 a x-6 a^{2}-11 a+14=-2(x-2 a)^{2}+2 a^{2}-11 a+14$ よって， C の頂点の座標は，$\left.\underset{\mathcal{J}}{2} a, \frac{2}{2} a^{2}-11 a+14\right)$
ii）C の頂点が第 1 象限にあるとき，i）より
$2 a>0$ かつ $2 a^{2}-11 a+14>0 \Leftrightarrow a>0$ かつ $(2 a-7)(a-2)>0$

$$
\Leftrightarrow a>0 \text { かつ } a<2, \frac{7}{2}<a
$$

よって，求める a の値の範囲は，

$$
0<a<\frac{\text { 囲は, }}{\text { ウ }}, \frac{\frac{\text { 䂞 }}{\sqrt{2}}}{\frac{1}{才}}<a
$$

iii）$\quad a<0$ のとき， $0 \leqq x \leqq 2$ における C の概形は右図のようになるから，
$f(x)=-2 x^{2}+8 a x-6 a^{2}-11 a+14$ とすると
$\mathrm{M}=f(0)=-6 a^{2}-\underset{\text { カキ }}{11} a+\sqrt{14}$
$m=f(2)=-6 a^{2}+\frac{5}{\square} a+\frac{6}{サ}$

iv）iii）の M, m に対して $\mathrm{M}-2 m=47$ を満たすから，
$\left(-6 a^{2}-11 a+14\right)-2\left(-6 a^{2}+5 a+6\right)=47$
$\Leftrightarrow 6 a^{2}-21 a-45=0 \Leftrightarrow 2 a^{2}-7 a-15=0 \Leftrightarrow(2 a+3)(a-5)=0$
$\Leftrightarrow a=-\frac{3}{2}, 5$
$\Leftrightarrow a=-\frac{3}{2}, 5$
よって，$a<0$ より求める a の値は，$a=-\frac{\frac{シ}{3}}{\frac{2}{2}}$
iv） C^{\prime} は C を原点に関して対称移動したグラフであるから， C の x, y をそれぞれ $-x,-y$ に置き換えて整理すると，
$\mathrm{C}^{\prime}: y=2 x^{2}+8 a x+6 a^{2}+11 a-14$
これと $y=-2$ より y を消去すると
$2 x^{2}+8 a x+6 a^{2}+11 a-14=-2 \Leftrightarrow 2 x^{2}+8 a x+6 a^{2}+11 a-12=0$－（1）
（1）が実数解をもたない条件を求めればよいから，（1）の判別式をDとして，
$\mathrm{D} / 4=(4 a)^{2}-2\left(6 a^{2}+11 a-12\right)=4 a^{2}-22 a+24=2(2 a-3)(a-4)<0$
よって，求める a の値の範囲は，$\frac{\frac{\text { 旨 }}{\frac{3}{2}}}{\frac{2}{y}}<a<\frac{4}{\text { タ }}$
（2）
i）条件より，このデータの平均値が 12 （点）であるから，
$\frac{1}{10}\{10+14+a+17+10+15+18+(a+5)+13+10\}=12$
$\Leftrightarrow 2 a+112=120$
よって，求める a の値は，$a=$ 手
ii）生徒の10人の得点データを低い順に並びかえると，（i）より $a=4$ を代入）

よって，このデータの四分位範囲は， $15-10=$＂
iii）このデータの分散は，
$\frac{1}{10} \cdot\left\{(4-12)^{2}+(9-12)^{2}+(10-12)^{2}+(10-12)^{2}+(10-12)^{2}+(13-12)^{2}+(14-12)^{2}\right.$ $\left.+(15-12)^{2}+(17-12)^{2}+(18-12)^{2}\right\}$
$=\frac{1}{10} \cdot(64+9+4+4+4+1+4+9+25+36)=\frac{1}{10} \cdot 160=\frac{16}{\overline{\text { FF }}}$

【解説】

（1）•i）～iv）については， 2 次関数の頻出問題であるが，最大值•最小値を求める場合 にはグラフの軸の位置や凸の向きには注意すること。
－v）については，次のような（別解）も考えられる。
（別解）
C の頂点と C^{\prime} の頂点も原点に関して対称であるから， C^{\prime} の頂点の座標は，
（ $-2 a$ ，$-2 a^{2}+11 a-14$ ）となる。
C^{\prime} と直線 $y=-2$ が共有点をもたないとき， C^{\prime} が下沉凸のグラフであることを考えると
（ C^{\prime} の頂点の y 座標）>-2 が成り立つような条件を求めればよい。
よって，$-2 a^{2}+11 a-14>-2 \Leftrightarrow 2 a^{2}-11 a+12<0 \Leftrightarrow(2 a-3)(a-4)<0$
したがって，求める求める a の值の範囲は，$\frac{3}{2}<a<4$
（2）•i）～iii）については，データの分析の基本問題である。
－iii）については，分散の求め方は，次の 2 通りがある。
ア）（偏差）の 2 乗の平均〈定義〉
ィ）（個々のデータの 2 乗の平均値）－（全データの平均值の 2 乗）

第3問

（1）
i）条件より， $\mathrm{AB}=8, \mathrm{BC}=15, \angle \mathrm{ABC}=180^{\circ}-\angle \mathrm{ADC}=60^{\circ}$ だから $\triangle \mathrm{ABC}$ において余弦定理より
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}-2 \cdot \mathrm{AB} \cdot \mathrm{BC} \cdot \cos \angle \mathrm{ABC}=8^{2}+15^{2}-2 \cdot 8 \cdot 15 \cdot \cos 60^{\circ}=169$ よって， $\mathrm{AC}=13$
条件より， $\mathrm{CD}=8, \angle \mathrm{ADC}=120^{\circ}$ であり， $\mathrm{AC}=13$ であるから， $\mathrm{AD}=x$ とおくと， $\triangle \mathrm{ACD}$ において余弦定理より
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}-2 \cdot \mathrm{AD} \cdot \mathrm{CD} \cdot \cos \angle \mathrm{ADC}$
$\therefore 13^{2}=x^{2}+8^{2}-2 \cdot x \cdot 8 \cdot \cos \angle 120^{\circ} \Leftrightarrow x^{2}+8 x-105=0 \Leftrightarrow(x+15)(x-7)=0$
$x>0$ より $x=7$ よって， $\mathrm{AD}=7$
ii）条件より $\angle \mathrm{ADC}=120^{\circ}$ であり，i）より $\mathrm{AC}=13$ だから，$\triangle \mathrm{ACD}$ において正弦定理より $\frac{\mathrm{AC}}{\sin \angle \mathrm{ACD}}=2 \mathrm{R}$ よって， $\mathrm{R}=\frac{13}{2 \cdot \sin 120^{\circ}}=\frac{\text { エオ }}{\sqrt{\frac{13}{\sqrt{3}}}}$
iii）条件より， $\mathrm{AB}=8, \mathrm{BC}=15, \angle \mathrm{ABC}=180^{\circ}-\angle \mathrm{ADC}=60^{\circ}, \mathrm{CD}=8, \angle \mathrm{ADC}=120^{\circ}$ であり，i）より $\mathrm{AD}=7$ であるから，三角形の面積の公式より
$\mathrm{S}=(\triangle \mathrm{ABC}$ の面積 $)+(\triangle \mathrm{ACD}$ の面積 $)=\frac{1}{2} \cdot \mathrm{AB} \cdot \mathrm{BC} \cdot \sin \angle \mathrm{ABC}+\frac{1}{2} \cdot \mathrm{AD} \cdot \mathrm{DC}$ $\cdot \sin \angle \mathrm{ADC}=\frac{1}{2} \cdot 8 \cdot 15 \cdot \sin 60^{\circ}+\frac{1}{2} \cdot 7 \cdot 8 \cdot \sin 120^{\circ}=30 \sqrt{3}+14 \sqrt{3}=\sqrt[44]{\text { 干ク }} \sqrt{\frac{3}{ヶ}}$
iv）条件より， $\mathrm{AB}=8, \mathrm{BC}=15$ であり， i$)$ より $\mathrm{AC}=13$ であるから，$\triangle \mathrm{ABC}$ の面積を S_{1} とすると， $\mathrm{S}_{1}=\frac{1}{2} \cdot(\mathrm{AB}+\mathrm{BC}+\mathrm{CA}) \cdot \mathrm{r}=\frac{1}{2} \cdot(8+15+13) \cdot \mathrm{r}=18 \mathrm{r}$

v） $\mathrm{EA}=y$ とおくと， $\mathrm{EB}=y+8$ であり， $\mathrm{ED}=z$ とおくと， $\mathrm{EC}=z+8$ である。
ここで，四角形は円 O に内接するから，$\angle \mathrm{EAD}=\angle \mathrm{ECB}$ であり，$\angle \mathrm{AED}=\angle \mathrm{CEB}$
よって，$\triangle \mathrm{EAD} \sim \triangle \mathrm{ECB}$（二角相等）だから， $\mathrm{EA}: \mathrm{EC}=\mathrm{ED}: \mathrm{EB}=\mathrm{AD}: \mathrm{CB}=7: 15$ したがって，$y: z+8=z: y+8=7: 15$ だから $15 y=7(z+8), 15 z=7(y+8)$ これを解くと，$y=7, z=7$

すなわち， $\mathrm{EA}=\frac{7}{7}, \mathrm{ED}=\frac{7}{\text { ス }}$
（2）i）8個の球を円形に並べる並べ方は，（ $8-1$ ）！通り
1,2 ， 3 の 3 個の球を 1 個にまとめると， $1 \sim 8$ の 6 個の球を円形に並べる並べ方は，
（6－1）！通り。
$1,2,3$ の 3 個の球の並べ方は， $3!$ 通り。
よって， 1,2 ， 3 の 3 個の球が隣り合って並ぶ確率は，

$$
\frac{(6-1)!\times 3!}{(8-1)!}=\frac{5!\times 3!}{7!}=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \times 3 \cdot 2 \cdot 1}{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=\frac{3 \cdot 2 \cdot 1}{7 \cdot 6}=\frac{\text { 七 }}{\frac{1}{7}}
$$

ii） 8 個の球を円形に並べる並べ方は，$(8-1)!$ 通り
4,5 の球の位置を固定すると，4，5以外の 6 個の球の並べ方は， $6!$ 通り。
よって，4，5の 2 個の球が向かい合って並ぶ確率は，

$$
\frac{6!}{(8-1)!}=\frac{6!}{7!}=\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=\frac{\frac{\text { 夕 }}{1}}{\frac{7}{\text { f }}}
$$

iii）奇数の球 4 個を円形に並べる並べ方は，$(4-1)$ ！通り
偶数の球 4 個を 1 個ずつ奇数の球 4 個の間に置いていく並べ方は $4!$ 通り。
よって，奇数の球と偶数の球が交互に並ぶ確率は，

$$
\frac{(4-1)!\times 4!}{(8-1)!}=\frac{3!\times 4!}{7!}=\frac{3 \cdot 2 \cdot 1 \times 4 \cdot 3 \cdot 2 \cdot 1}{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=\frac{\frac{1}{4}}{\frac{35}{7}}
$$

【解説】
（1）•i ）～iv）については，余弦定理•正弦定理や三角形の面積の公式を用いて解く最頻出 タイプの基本的問題である。

- v）については，「三角形の相似」を用いて解く頻出問題である。
- 四角形 ABCD が台形になることを用いれば，i），iii），v）の各問については，より少ない計算量で解くことができる。（三平方の定理•台形の面積の公式•平行比例等）
（2）•i）～iii）については，円順列の考え方を用いて解く頻出問題である。
－ii），iii）については，ある番号の球の位置を固定すると，残りの球の並べ方は，円順列 ではなく順列になることに注意すること。

			\bigcirc
	7		m
	\bigcirc		\bigcirc
	－		＞

。（1）死面田，小」ケ

，Θ 开霜目

。边激

 \qquad
－罩管

 \qquad
－䨪管

 \qquad

 \qquad

。（1）开面本	汹䢒	\oplus		（1）		（1）	1＋回业供	Θ	效耻	
－（1）平面等	洞䋱	\oplus	嘓弤	（1）	丑器	（1）	总样	Θ	平首	N
。（1）开票本	，vo 蓡	\oplus	蠋H	（1）	y	（1）		Θ	䍝	Ξ

 \qquad

。贾标

 ケヨ컨［回暟］

【学部共通】

一般選抜（A 日程）試験問題 「英語」「数学」「生物」「国語」解答解説 「英語」「数学」「生物」「国語」

2023年度（令和 5 年度）入学者選抜試験問題

一般選抜（A日程）
1月29日実施
英 語
問題は次のページからです。

＜注意事項〉

一開始前一
1．試験時間は 50 分です。監督者の＜開始＞の指示があるまで，この冊子を開けない。
2．解答用紙には氏名欄，解答欄のほかに下記の 4 つの項目欄がある。その説明と解答用紙の
「注意事項」を読み，4項目のすべてに記入またはマークする。
受験番号 上段に受験番号を記し，下段にマークする。
解答科目 上段に英語と漢字で大きく横書きし，下段にマークする。

- 第一志望 第一志望の専攻または学科にマークする。
- 入試区分 A日程：1月29日（日）にマークする。

3．解答用紙に汚れがある場合は，挙手で監督者に知らせる。
4．この表紙の受験番号欄に受験番号を記入する。この冊子は試験終了後に回収する

一開始後—
1．この問題冊子の問題部分は 8 ページです。開始後確認してページの落丁，乱丁，印刷不鮮明な どがある場合は，挙手で監督者に知らせる。
2．解答はすべて解答用紙の所定の欄へマークによって行う。例えば， \square と表示のある問いに対して（2）と答える場合は，次の例のように解答番号3の解答欄（2）をマークする。

〈例〉

3．質問などがある場合は，挙手で監督者に知らせる。
4．中途退室は認められない。
5．試験終了の合図（監督者の指示）と同時に筆記用具を置く。解答用紙は表向きにして問題冊子 の右において，回収を待つ。次の指示があるまで席を立たない。

$$
1 \text { ページ ~ } \quad 8 \text { ページ }
$$

第1問 次の日本語の意味になるように，英文の（ ）に当てはまるものを，それぞれ（1）～④
の中から一つ選び番号をマークせよ。

1．病院に着いたらすぐに私に電話しなさい

Call me as soon as you（ ）the hospital．
（1）reach for
（2）have reached
（3）will arrive
（4）will have arrived

2．何もお話しすることはありません。私はむしろここにいたくありません。

I have nothing to tell you．I＇d rather（ ）here．
（1）not to be
（2）not being to
（3）not be
（4）not being

3．改訂された参考書はちょうど出版されたところです。

The revised reference book（ ）．
（1）has just been published
（2）has just published
（3）just been published
（4）just published

4．彼女は立ち止まって，全く動こうとはしなかった。
She stopped still and（ ）not move at all．
（1）will
（2）would
（3）shall
（4）should

5．私は両親に海外留学させてほしいと頼む勇気がない。

I don＇t have the courage（ ）my parents to let me study abroad．
（1）for ask
（2）for asking
（3）to ask
（4）to asking

6．彼女はあの試験がどんなものかわかっていない。

She doesn＇t know（ ）that test is like．
（1）what
（2）that
（3）if
（4）when

7．彼はどちらかというと白ワインより赤ワインが好きだ。

He rather likes red wine than（ ）
（1）white
（2）a white
（3）a white one
（4）the white one

8．その章をしっかり復習しなさい。さもないとまた思い違いしますよ。
You have to review the chapter well（ ）you＇ll get it wrong again．
（1）and
（2）so
（3）but
（4）or

9．母は息子に友人のお見舞いに行ってきたかどうか尋ねた。

The mother asked her son（ ）he had visited his sick friend．
（1）if
（2）where
（3）which
（4）what

10．彼女は身の上話をする人ではない。

She is the（ ）person to tell a personal story．
（1）first
（2）last
（3）poor
（4）rich
\square

第2問 次の日本語と同じ意味になるように語（語句）を並べたとき，3番目（※）に入るものを，そ れぞれ（1）～（5），（6）の中から一つ選び番号をマークせよ。

1．私のテニス仲間の一人は，高額なラケットをかなり多く持っている。

One of my tennis friends has \qquad （＊） \qquad ＿．
（1） a
（2）quite
（3）rackets
（4）expensive
（5）few

2．彼の挑戦は失敗に終わるのではないかと私は思う。

I think \qquad －．
（1）failure
（2）result
（3）will
（4）in
（5）his challenge

3．君には母親がどれほど心配していたかわからないだろう。

（1）idea
（2）no
（3）would
（4）worried
（5）have
（6）how

4．娘はこのところ英語が急速に進歩した

My daughter \qquad $\xrightarrow{(※)}$ her English recently．
（1）rapid（2）made（3）has（4）progress（5）in

5．彼が家事を手伝うのは当然のことだと思う。
I \qquad he would help with the household chores．

第3問 次の会話文の（ ）に入る適切な英文を，それぞれ（1）～④の中から一つ選び番号をマ ークせよ。

1．A ：Would you like another cup of tea？
B ：Thank you．I would love to，but I have an appointment． （
）
（1）I have to get going
（2）I have to call you．
（3）Ill have another one．
（4）I＇ll stay here．

2．A ：Excuse me，can you tell me how to get to the station？ B ：
（1）Go straight ahead
（2）I＇ll see you there
（3）I＇ll follow you．
（4）Wait around the corner

3．A ：Mom，I＇ll be home late today．
B ：What are you going to do with your dinner？
（ ）
（1）The meat was so tender．
（2）I think it＇s too late．
（3）I＇ll pick up something to eat
（4）Not many places are open．

4．A ：How long do we have until we leave home，Harry？
B ：About fifteen minutes，Mom．
A ：If you＇re coming with me，（ ）
B ：I＇ve packed everything I need，so don＇t worry．
（1）you should apply for your passport right away．
（2）you should get some rest while you can．
（3）make sure you book the plane we＇re taking．
（4）make sure you don＇t forget anything

第4問 次の英文を読み，各問に答えよ

If you were to measure out 1 kilogram of steel and 1 kilogram of feathers，they would each have the same＊mass．But their volumes would differ．You＇d need a far bigger volume of feathers because most of the elements they＇re made from are lighter than those in steel．It takes more of those atoms to build up the same mass — which takes（ ア ）more space．

$$
<\text { omission }>
$$

You can change an object＇s mass by removing some of its parts．When you take books out of your＊backpack at the end of a school day，you＇ve decreased the backpack＇s mass．Mass can also change by adding more matter．When a child grows，their body is building longer bones and bigger＊organs．（1）The child＇s mass will increase because they are transforming food energy into matter for their body．
It＇s important to know（ \uparrow ）mass doesn＇t change by varying its shape，location or size． Your body＇s mass is the same when you＇re curled up on the sofa or when you stretch as high as you can．And it＇s the same when you＇re at home or at the beach or at school！But your mass is a little bit more after you＇ve eaten breakfast，compared with when you first wake up in the morning．Mass is a fundamental measurement of how much matter an object contains．
Weight is a measurement of the＊gravitational force on an object．（2）It not only depends on the object＇s mass，but also on its location．Therefore，weight is actually a measure of force．In the United States，most people measure weight in pounds．
（3）Let＇s say that your body has a mass of 40 kilograms．Your mass is 40 kilograms on Earth， on the moon，on Jupiter－and even floating inside the International Space Station．Your mass is 40 kilograms no matter where you are．But your weight differs from place to place because of differences in how hard＊gravity at each site pulls（ ウ ）you．On Earth＇s surface， 1 kilogram of mass is equivalent to 2.2 pounds of weight．So your 40 －kilogram mass on Earth would weigh $40 \times 2.2-$ or 88 pounds．

Language can get＊tricky here．Scientifically，you shouldn＇t say，＂My doctor measured my weight as 40 kilograms，＂because weight isn＇t the same as mass．It would be similarly incorrect to say，＂My doctor measured my mass as 88 pounds．＂A ，since we all experience the same strength of Earth＇s gravity on our mass，in casual language we often use mass and weight ＊interchangeably．（ 工 ）much the same way，most people feel comfortable describing mass in pounds and weight in kilograms．
To avoid this＊confusion，scientists use a standard unit for force．It＇s called the newton（in honor of Isaac Newton）．On Earth， 100 newtons of weight（a force）is equal to about 22 pounds． This is a measure of how hard Earth＇s gravity pulls（ ウ ）a mass of about 10 kilograms．
＊mass 質量＊backpack リユックサック＊the metric system メートル法＊definition 定義 ＊organs 器官＊gravitational 重力の＊gravity 重力＊tricky 微妙な＊interchangeably 同じ意味で ＊confusion 混乱

問1 空欄（ ア ）～（ エ ）に入る最も適切な語を，それぞれ次の（1）～（4）の中から一つ選び番号をマークせよ。ただし，（ ウ ）は 2 か所ある。

（2） By
（3）In
（4） So

問 2 空欄 A に入る最も適切な語（語句）を，次の（1）（4）の中から一つ選び番号をマーク せよ。
（1）In addition
（2）In any case
（3）Therefore
（4）However

問 3 下線部 1 （1）の日本語として最も適切なものを，次の（1）～（4）の中から一つ選び番号をマークせ よ。

The child＇s mass will increase because they are transforming food energy into matte for their body．
（1）子どもの質量は，食物エネルギーを，体を作るための物質に変えていくので増加する
（2）子どもの質量は，体を作る物質が食物エネルギーを取り込んでいくので増加する。
（3）子どもの質量の増加は，体を作る物質が食物エネルギーによって置き換わることで起こる。
（4）子どもの質量の増加は，食物エネルギーを変換する物質が体内に蓄積するために起こる
問4 下線部（2）の日本語として最も適切なものを，次の（1）～（4）の中から一つ選び番号をマーク せよ。

It not only depends on the object＇s mass，but also on its location．
（1）重量は，物体の質量にも，その置かれた場所によっても変わらない
（2）重量は，物質の質量だけでなく，その置かれた場所にも依存する。
（3）重量は，物体の質量によって決まるが，その置かれた場所によっては決定しない
（4）重量は，物質の質量によっては定まることはないが，その置かれた場所によって定ま る。

問5 下線部（3）の Let＇s say とほぼ同じ意味を表す語（語句）を，次の（1）～④）の中から一つ選び番号をマークせよ。
（1）suppose
（2）even so
（3）maybe
（4）by the way

問 6 英文によると，地球上で 30 kg の物質は約何ニュートンに相当するか。最も適切な数値 を，次の（1）～⑤）の中から一つ選び番号をマークせよ。
（1） 66
（2） 145
（3） 300
（4） 450
（5） 660

問 7 英文の内容と合うものを，次の（1）～（4）の中から一つ選び番号をマークせよ。
（1）アメリカでは日常的にキログラムという単位を使う。
（2）科学的には重量と質量は同様に扱われる。
（3）人の質量は朝起きたときに少し増加している。
（4）ニュートンという単位はアイザック・ニュートンに由来する。

2023 年度（令和 5 年度）入学者選抜試験問題
 一般選抜（A 日程）

1月29日 実施
数 学
＊下記のく注意事項〉をよく読み，監督者の指示を待ちなさい。

＜注意事項＞

－開始前一

1．試験時間は50分です。監督者の＜開始＞の指示があるまで，この冊子を開けない。
2．解答用紙には氏名欄，解答欄のほがに下記の4つの項目眮がある。その説明と解答用紙の
「注意事項」を読み，4項目のすべてに記入またはマークする。
受験番号 上段に受験番号を記し，下段にマークする。

- 解答科目 上段に数学と漢字で大きく横書きし，下段にマークする。
- 第一志望 第一志望の専攻または学科にマークする。
- 入試区分 A日程：1月29日（日）にマークする。

3．解答用祇に汚れがある場合は，挙手で監督者に知らせる
4．この表紙の受験番号欄に受験番号を記入する。この冊子は試験終了後に回収する。
－開始後－
1．この問題冊子の問題部分は 5 ページです。開始後確認してページの落丁，乱丁，印刷不鮮明な どがある場合は，举手で監督者に知らせる。
2．解答はすべて解答用紙の所定の湘へマークによって行う。
3．解答を始める前に，冒頭のページにかかれた「解答上の注意」を読む。
4．計算は，各問題の次のページに用意した「計算用紙」を用いる。
5．質問などがある場合は，挙手で監督者に知らせる。
6．中途退室は認められない。
7．詞験終了の合図（監督者の指示）と同時に筆記用具を置く。解答用紙は表向きにして問題冊子 の右において，回収を待つ。次の指示があるまで席を立たない。

解答はすべて解答用紙の所定の欄にマークしなさい。
問題の文中の ア，イウ などには，特に指示がない限り，数字（ $0 \sim 9$ ），符号（ - ，\pm ）の いずれかが入ります。ア，イ，ウ，‥の一つ一つが，これらのいずれか一つに対応します。それらを解答用紙のア，イ，ウ，‥で示された解答欄にマークして答えなさい。
なお，解答用紙に 3 つある解答欄の左肩の数字は，それぞれ大問の番号を表す。

例1 アイウに－83と答えたいとき。

分数形で解答する場合は，既約分数で答えなさい。符号は分子につけ，分母につけてはいけません。

例2
 に－$\frac{4}{5}$ と答えたいときは，$\frac{-4}{5}$ として答えなさい。

問題は次のページからです。

$$
1 \text { ページ ~ } 5 \text { ページ }
$$

受験番号

\square

第1問 以下の問いに答えよ。
（1） $9\left(x^{2}+2 x\right)^{2}-19\left(x^{2}+2 x\right)-24$ を因数分解すると，
（ $x+$

\square ウ $x+\square$ ウ x オ（
（ただし， \qquad オ とする）
（2）$x=\sqrt{\frac{7+4 \sqrt{3}}{7-4 \sqrt{3}}}, y=\sqrt{\frac{7-4 \sqrt{3}}{7+4 \sqrt{3}}}$ のとき，次の式の値を求めよ。

$$
x+y=\text { カキ, } x y=\text { ク, }, \frac{1}{2}\left(x^{2}+y^{2}\right)=\text { ケコ }
$$

（3）等式 $\cos ^{2} \theta=\frac{5 \sin \theta-1}{2}\left(0^{\circ} \leqq \theta \leqq 180^{\circ}\right)$ が成り立つとき，θ の値を求めよ。

（4）次の図において，x, y, z の値を求めよ。

（ O は円の中心であり， PE は円 O の接線， E は接点， OH H O から CD に引いた垂線である）

第2問 以下の問いに答えよ。

（1） 1 辺の長さが 6 の正三角形 ABC があり， 2 つの動点 P, Q がそれぞれ同時に頂点 A, C を出発し，辺 AB, CA 上を毎秒 1 の速さで頂点 B, A まで進 むものとする。出発してから t 秒後 $(0 \leqq t \leqq 6)$ の $\triangle \mathrm{APQ}, ~ \triangle \mathrm{BPQ}, ~ \triangle \mathrm{CPQ}$ の面積をそれぞれ

S，T，Uとする。

このとき，次の設問に答えよ。
i） $\mathrm{S}, \mathrm{T}, \mathrm{U}$ の値は，

ii） S が最大になるのは，$t=$

iii） $\mathrm{S} \geqq \frac{5 \sqrt{3}}{4}$ となるような t の値の範囲は， \qquad
iv） $2 \mathrm{~S}+3 \mathrm{~T}+2 \mathrm{U}$ が最小になるのは，$t=$ \square のときであり，そのときの最小値は
\square
v） $3 \mathrm{~S}+\mathrm{T}=7 \mathrm{U}-3 \sqrt{3}$ となるような t 値は

（2）4つのクラス A，B，C，D（各生徒数 20 人）に対して，ある小テスト（ 10 点満点）を実施したとき，各クラス別の小テストの得点データは次の表のようになった。

クラス	得点洶	0	1	2	3	4	5	6	7	8	9	10
A	人数	0	1	2	3	4	4	3	2	1	0	0
B	人数	3	2	2	1	1	2	1	1	2	2	3
C	人数	0	0	0	2	1	2	3	4	5	2	1
D	人数	2	3	4	3	1	2	2	1	0	1	1

上の表より， 4 つのクラス $\mathrm{A}, ~ \mathrm{~B}, \mathrm{C}, \mathrm{D}$ の得点データを箱ひげ図にしたものを，次の（1）～8の箱ひげ図の中からそれぞれ 1 つずつ選び，その番号をマークせよ。

Aの箱ひげ図は チ
Bの箱ひげ図は

C の箱ひげ図は

Dの箱ひげ図は \qquad

第 3 問 以下の問いに答えよ。
（1）1辺の長さが 12 の正四面体 ABCD があり，辺 BC, BD 上にそれぞれ $\mathrm{BP}=4, \mathrm{BQ}=8$ となるように 2 点 P, Q をとるものとする。 このとき，次の設問に答えよ。

i）線分 $\mathrm{AP}, \mathrm{AQ}, \mathrm{PQ}$ の長さは，

$$
\mathrm{AP}=\mathrm{AQ}=\square \text { ア } \sqrt{\square イ}, \mathrm{PQ}=\square \text { ア } \sqrt{\square ウ}
$$

ii） $\cos \angle \mathrm{PAQ}, \sin \angle \mathrm{PAQ}$ の値は，

$$
\cos \angle \mathrm{PAQ}=\frac{\sqrt{\text { エオ }}}{14}, \sin \angle \mathrm{PAQ}=\frac{\boxed{\text { カ }} \sqrt{\boxed{\text { キ }}}}{14}
$$

iii）$\triangle \mathrm{APQ}$ の面積 S の値は， \square
iv）$\triangle \mathrm{APQ}$ の外接円の半径 R の値は，

$$
\mathrm{R}=\frac{\text { コサ }}{\text { コ }}
$$

$\mathrm{v})$ 正四面体 ABCD の体積 V と三角錐 ABPQ の体積 V^{\prime} の値の比は，

（2）正六角形 ABCDEF の周上を動く点 P が，最初 A にいるものとし，点 P は，正六角形 の両隣りのいずれかの頂点に等しい確率で 1 回ずつ移動していくものとする。 このとき，次の設問に答えよ。

i）点 P が 4 回の移動後に A にいる確率は \square
ii）点 P が 5 回の移動後に D にいる確率は
iii）点 P が 6 回の移動後に A にいる確率は \square

2023年度（令和 5 年度）入学者選抜試験問題

一般選抜	（A 日程）
1 月 29 日	実施
生	物

＊下記の〈注意事項〉をよく読み，監督者の指示を待ちなさい。

＜注意事項＞

－開始前—
1．試験時間は 50 分です。監督者の＜開始＞の指示があるまで，この冊子を開けない。
2．解答用紙には氏名欄，解答闌のほかに下記の 4 つの項目欄がある。その説明と解答用紙の
「注意事項」を読み，4項目のすべてに記入またはマークする。
受験番号 上段に受験番号を記し，下段にマークする。

- 解答科目 上段に生物と漢字で大きく横書きし，下段にマークする。
- 第一志望 第一志望の専攻または学科にマークする。
- 入試区分 A日程：1月29日（日）にマークする。

3．解答用紙に汚れがある場合は，挙手で監督者に知らせる。
4．この表紙の受験番号欄に受験番号を記入する。この冊子は試験終了後に回収する。

一開始後一
1．この問題冊子の問題部分は 9 ページです。開始後確認してページの落丁，乱丁，印刷不鮮明な どがある場合は，挙手で監督者に知らせる。
2．解答はすべて解答用紙の所定の欄ヘマークによって行う。例えば， 3 と表示のある問いに対して（2）と答える場合は，次の例のように解答番号3の解答欄（2）をマークする。

〈例〉

3．質問などがある場合は，挙手で監督者に知らせる。
4．中途退室は認められない。
5．試験終了の合図（監督者の指示）と同時に筆記用具を置く。解答用紙は表向きにして問題冊子 の右において，回収を待つ。次の指示があるまで席を立たない。

問題は次のページからです。

$$
1 \text { ページ ~ } 9 \text { ページ }
$$

第1問 インスリンに関する次の文章を読み，以下の問いに答えよ。

ヒトの（A）㯜臓のある種の細胞では，（B）インスリンの遺伝子から mRNA が転写され， さらに翻訳されてペプチドホルモンが合成される。mRNAには 110 個のアミノ酸か らなる分子量約 11，500 のプレプロインスリンがコードされている。翻訳開始後，粗面小胞体ではアミノ基のある方の末端から 24 個のアミノ酸からなるシグナルペプチ ドと呼ばれる部分が切断除去され，アミノ酸 86 個からなるペプチドができる。これをプ ロインスリンと呼ぶ。プロインスリンは，小胞体腔内で（C）正しい位置に S－S 結合が形成され，（D）正しい立体構造に折りたたまれる。その後，小胞体からゴルジ体へと輸送 され，分泌小胞へと組み込まれて，（E）Cペプチドが切り出されてインスリンとなる。

血糖値が上昇すると，分泌小胞に蓄えられた（F）インスリンが分泌される。

図1 ヒトのインスリンの遺伝子，mRNA，プレプロインスリン，プロイン スリンの各々の構造を示す。遺伝子のATGとTAGはそれぞれ，開始 コドン，停止コドンを示す。

図2 ヒトのインスリンの構造を示す。灰色の円は個々のアミノ酸を表す。a はS－S 結合しているアミノ酸を示し，b～e は各々のペプチド鎖の両端のアミノ酸の位置を示す。

問 1 下線部（A）に関して，インスリンの遺伝子を転写，翻訳している細胞を何と呼ぶか，下記 より一つ選心。
（1）神経分泌細胞
（2）外分泌細胞
（3）すい液分泌細胞
（4）標的細胞
（5） A 細胞
（6） B 細胞

問 2 下線部（B）に関して，次の（1），（2）に答えよ。
（1）インスリン遺伝子のエクソンとイントロンの各々の個数の組み合わせを，下記より一つ選べ。 \square

	エクソン	イントロン
(1)	2	2
2	2	3
3	2	7
4	3	2
(5)	3	4
6	4	3
7	4	5
8	5	4

（2）遺伝子が転写された後にイントロンが取り除かれる現象を何と呼ぶか，下記より一つ選 べ。 3
（1）キャッピング
（2）エディティング
（3）スプライシング
（4）フォールディング
（5）カッティング
（6）マッティング

問 3 下線部（C）に関して，図2のS－S 結合に関与するアミノ酸 a は何か，下記より一つ選 べ。 \qquad
（1）グリシン
（2）メチオニン
（3）トレオニン
（4）グルタミン酸
（5）ヒスチジン
（6）システイン

問 4 下線部（D）に関して，次の（1），（2）に答えよ。
（1）翻訳されたペプチド鎖が正しい立体構造を取る過程を何と呼ぶか，下記より一つ選べ。 5
（1）キャッピング
（2）エディティング
（3）スプライシング
（4）フォールディング
（5）カッティング
（6）マッティング
（2）ペプチド鎖やタンパク質が正しい立体構造を取り，その機能を獲得する過程を助けるタ ンパク質を一般に何と呼ぶか，下記より一つ選べ。
（1）シャペロン
（2）カドヘリン
（3）ダイニン
（4）インテグリン
（5）キネシン
（6）チューブリン

問 5 下線部（E）に関して，切断除去される前のCペプチドは，図 2 の b～e のアミノ酸の内，どれとどれとの間にあるか，下記の組み合わせより一つ選べ。ただし，\rightarrow は Cペブ チドのアミノ基のある末端からカルボキシ基のある末端への方向を表す。 \qquad
（1）b）\rightarrow d
（2）$b \rightarrow e$
（3）$C \rightarrow d$
（4） $\mathrm{c} \rightarrow \mathrm{e}$
（5）d \rightarrow b
（6）$d \rightarrow c$
（7）$e \rightarrow b$
（8） $\mathrm{e} \rightarrow \mathrm{c}$

問 6 下線部（F）に関して，分泌小胞の内容物が細胞外へ分泌される過程を何と呼ぶか，下記よ り一つ選べ。
（1）エクソサイトーシス
（2）エンドサイトーシス
能動輸送
（4）受動輸送
（5）細胞質流動
（6）シグナル伝達

第2問 図3はクエン酸回路を模式的に示したものである。次の文章を読み，以下の問いに答 えよ。

図3クエン酸回路。ア～ケは，各々の反応の段階を示した。 $\mathrm{H} \cdot \mathrm{CoA}$ はコエン ザイム A （補酵素 A ）を示した。 Pi は $\mathrm{H}_{3} \mathrm{PO}_{4}$ を示した。楕円内にはクエン酸回路の成分名と化学式を示した。 $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{NAD}^{+}, \mathrm{NADH}$ の出入りは省略している。

クエン酸回路は，細胞の代謝の中心をなす代謝回路である。（A）クエン酸回路では図3の力 の段階で 1 分子の ATPが合成される。さらに，この回路で生じた（B）NADH＋＋${ }^{+}$や （C） FADH_{2} により（D）電子伝達系に水素の還元力が伝えられ， O_{2} を使って多量の ATP が合成 される。クエン酸回路では，（E）アセチル CoA で導入された 2 個の炭素が二酸化炭素となり，呼気から体外に排泄される。

問1下線部（A）のクエン酸回路でのATPの合成の形式を何と呼ぶか，また，下線部（D）の電子伝達系でのATPの合成の形式を何と呼ぶか，下記よりそれぞれ一つずつ選べ。

クエン酸回路 \qquad電子伝達系 \qquad
（1）酸化的リン酸化
（2）還元的リン酸化
（3）化学的リン酸化
（4）基質レベルのリン酸
（5）CoAリン酸化
（6）光リン酸化

問 2 下線部（B）に関して，クエン酸回路では NADH＋＋+ が 3 カ所で合成される。図 3 の ア～～かのらち，その 3 力所の組み合わせはどれか，下記より一つ選心。 11
（1）
（3） 1 \qquad 1
ウ I芴
（2）

問 3 下線部（C）に関して， FADH_{2} の 1 分子から電子伝達系で最大いくつの ATP が合成される か，下記より一つ選心。 12
（1） 1
（2） 2
（3） 3
（4） 4
（5） 5
（6） 6

問 4 下線部（D）に関して，次の（1），（2）に答えよ。
（1） 1 分子のアセチル CoA が代謝を受けた場合，クエン酸回路から電子伝達系に送られる水素原子の総数はいくつか，下記より一つ選べ。 13
（1） 4
（2） 5
（3） 6
（4） 7
（5） 8
（6） 9
（2） 1 分子のアセチル CoA がクエン酸回路を経て完全に分解されたとき，生産される ATP の総数は最大いくつか，下記より一つ選べ。 14
（1） 8
（2） 9
（3） 10
（4） 11
（5） 12
（6） 13

問5下線部（E）に関して，クエン酸回路では 2 カ所で二酸化炭素が生じる。図 3 の ア～ケ のうち，その 2 力所の組み合わせはどれか，下記より一つ選べ。 \square
（1）
（4）
（2） イ， b
（3） \square ウ，
（6）
（5）

第3問 細胞分裂に関する次の文章を読み，以下の問いに答えよ

ヒトの細胞の核には，46本の DNA 分子がある。細胞分裂の際には，DNA 分子は凝集し 46 本の染色体となる。その内，男女で形態的に差の無い 44 本は常染色体と呼ばれ，残り 2本は男性では XY，女性では XX と表される性染色体である。染色体を大きさの順に並べて みると，女性の場合，同じ形態の染色体が 23 種類，男性の場合， 22 種類あって，同じ形態 の染色体の組みを相同染色体と呼ぶ。一組の相同染色体はほぼ同じ遺伝子を同じ位置に乗 せている。ある遺伝子が染色体上で占める位置を ア と呼ぶ。同じ ア にある遺伝子 が同じ塩基配列であるとき，その個体を イ ，異なる部分があるとき ウ という。

卵子や精子の染色体数は 23 本しかなく，これらの生殖細胞（配偶子）を作る細胞分裂を （A）減数分裂と呼ぶ。（B）減数分裂では，同じ染色体に乗っている異なる遺伝子は，相同染色体 の部分的交換が起こらなければ，そろって配偶子に伝えられる。異なる染色体に乗っている遺伝子は，互いに関連なく配偶子に伝えられる。
（C）相同染色体の部分的交換はきわめて複雑な過程である。この過程によって，生殖細胞の もつ多様性が格段に広がるが，より生存に適した子孫を残せる一方で，生存に適しない子孫 を排除する自然のもつ過酷な一面がうかがえる。

問 1涺切な語句を，下記より各々一つずつ選心゙16 \square 1718
（1）遺伝子座
（2）遺伝子座標
（3）遺伝子位置
（4）遺伝子位
（5）木モ接合体
（6）ヘテロ接合体
（7）対立遺伝子
（8）相同遺伝子

問 2 下線部（A）に関して，次の（1），（2）に答えよ。
（1）細胞当たりの DNA の量は減数分裂の過程でどのように変化するか，問 2 の選択肢より一つ選べ。 \square
（2）核相は減数分裂の過程でどのように変化するか，問 2 の選択肢より一つ選心。 20

〈問 2 の選択肢〉 各選択肢の図は，横軸には減数分裂の過程，縦軸には減数分裂の開始時 の量を 2 としたときの相対値を示す。

問 3 下線部（B）に関して，（1）同じ染色体上にある遺伝子がそろって配偶子に伝えられる形式 および（2）異なる染色体にある遺伝子が配偶子に伝えられる形式を何と呼ぶか，下記より それぞれ一つずつ選べ。
（1）同じ染色体上にある遺伝子がそろって配偶子に伝えられる形式： \square
（2）異なる染色体にある遺伝子が配偶子に伝えられる形式： \square
（1）連続
（2）連鎖
（3）結合
（4）直伝
（5）異伝
（6）独伝
（7）対立
（8）独立

問 4 下線部（C）に関して，相同染色体の部分的交換を何とよぶか，下記より一つ選べ。 23
（1）組換え
（2）入換え
（3）乗換え
（4）染色体交換
（5）相同交換
（6）遺伝子交換

第4問 ヒトの循環器と血液に関する次の文章を読み，以下の問いに答えよ。

血管や心臓を流れる液体を血液と呼ぶ。一般に，（A）血液は心臓と血管以外を流れること はない。（B）血管は動脈と毛細血管，静脈とに分けられる。動脈は心臓から毛細血管までを，静脈は毛細血管から心臓までの血管を指す。

血液は液体成分の（C）血しょうと（D）細胞成分（血球）とに分けられ，酸素を豊富に含んだ血液を（E）動脈血，酸素濃度の低い血液を静脈血と呼ぶ。血液中で酸素を運搬するのは主に （F）へモグロビンである。

問 1 下線部（A）に関して，血管と心臓だけに血液が流れるシステムを何とよぶか，下記より一 つ選べ。 \qquad
（1）汎用血管系
（2）解放血管系
（3）開放血管系
（4）閉鎖血管系
（5）封鎖血管系
（6）閉塞血管系

問2 下線部（B）に関して，血管に関する記述のうち誤っているものはどれか，下記より一つ選
べ。 \qquad
（1）動脈，静脈の血管壁の外面は，結合組織でできた外膜でおおわれている。
（2）いずれの血管も内面は内皮細胞でおおわれている。
（3）静脈には弁があり血液の逆流を防いでいるが，動脈と毛細血管にはそれが無い。
（4）動脈と静脈の血管壁には筋肉層をもつが，毛細血管にはそれが無い。
（5）毛細血管の内外を血しょうは通過するが，血球が通過し移動することはない。
（6）一般に血圧と呼ばれ測定されるのは，動脈の血圧である。

問 3 下線部（C）に関して，健常人の血しょうに関する記述のうち誤っているものはどれか，下記より一つ選べ。 \qquad
（1）血しょうは血液の重さの約 55% を占めている。
（2）血しょうは血清より多くのフィブリノーゲンを含んでいる。
（3）血しょうの成分で最も多い質量 $\%$ をもつのは水で，次に多いのはタンパク質である。
（4）血しょう中のグルコースの質量\％は，ナトリウムイオンの質量 $\%$ よりも少ない。
（5）血しょうに含まれるタンパク質の多くは肝臓で合成されている。
血しょうの成分は原尿の成分とほぼ同じである。

問 4 下線部（D）に関して，次の（1），（2）に答えよ。
（1）健常人の血液 $1 \mathrm{~mm}^{3}$ 当たりに含まれる血球の個数の多いものから順に並べたとき，適切な順序はどれか，下記より一つ選べ。 \square
（1）白血球 $>$ 赤血球 $>$ 血小板
（3）赤血球 $>$ 白血球 $>$ 血小板
（2）白血球 $>$ 血小板 $>$ 赤血球
（4）赤血球 $>$ 血小板 $>$ 白血球
（5）血小板 $>$ 白血球 $>$ 赤血球
（6）血小板＞赤血球＞白血球
（7）全て，ほぼ同数
（2）血球に関する記述のうち誤っているものはどれか，下記より一つ選べ。 \square
（1）古くなった血球は脾臓と肝臓で破壊される。
（2）白血球には好中球，マクロファージ，樹状細胞，リンパ球などがある
（3）出血すると血小板はフィブリンを分泌して血液を凝固させる。
（4）成熟した赤血球と血小板は核をもたない。
（5）全ての白血球は核をもつ。
（6）成人では，全ての血球は骨髄でつくられる。
問5 下線部（E）に関して，動脈血が流れる血管と心臓の構造部分の組み合わせのうち適切なも のはどれか，下記より一つ選べ。
（1）上大静脈と左心室
（2）下大静脈と右心室
（3）肺動脈と左心室
（4）けい動脈と右心室
（6）門脈と右心房
（5）肺静脈と左心房

問 6 下線部（F）のへモグロビンに関する記述のうち適切ものはどれか，下記より一つ選べ。 30
（1）へモグロビンは α 鎖と B 鎖の 2 本のポリペプチドからなる。
（2）へモグロビンを構成するポリペプチド 1 本に鉄を含むへムが 1 分子結合している。
（3）ヘモグロビンを構成するポリペプチドはS－S 結合により結合している。
（4）へモグロビンを構成する特定のアミノ酸部分に酸素分子が結合する。
⑤ 血液中のへモグロビンの割合と酸素濃度との関係を表した曲線を酸素飽和曲線と呼 ぶ。

2023年度（令和 5 年度）入学者選抜試験問題一般選抜（A日程）

1月29日実施
国 語
問題は次のページからです。

$$
1 \text { ページ ~ } 13 \text { ページ }
$$

＊下記の＜注意事項〉をよく読み，監督者の指示を待ちなさい。

＜注意事項＞

一開始前一
1．試験時間は50分です。監督者の＜開始＞の指示があるまで，この冊子を開けない
2．解答用紙には氏名欄，解答欄のほかに下記の 4 つの項目欄がある。その説明と解答用紙の
「注意事項」を読み，4項目のすべてに記入またはマークする。
受験番号 上段に受験番号を記し，下段にマークする。
解答科目 上段に国語と漢字で大きく横書きし，下段にマークする。
第一志望 第一志望の専攻または学科にマークする。
入試区分 A日程：1月29日（日）にマークする。
3．解答用紙に汚れがある場合は，挙手で監督者に知らせる。
4．この表紙の受験番号欄に受験番号を記入する。この冊子は試験終了後に回収する。

一開始後—

1．この問題冊子の問題部分は 13 ページです。開始後確認してページの落丁，乱丁，印刷不鮮明 などがある場合は，挙手で監督者に知らせる。
2．解答はすべて解答用紙の所定の欄へマークによって行う。例えば， \qquad と表示のある問いに対して（2）と答える場合は，次の例のように解答番号3の解答欄（2）をマークする。

〈例〉

3．質問などがある場合は，挙手で監督者に知らせる。
4．中途退室は認められない。
5．試験終了の合図（監督者の指示）と同時に筆記用具を置く。解答用紙は表向きにして問題冊子 の右において，回収を待つ。次の指示があるまで席を立たない。

〔（픅）					蓝如肳吅
〔足11）		）紜ご电			
	Θ 叫	（a）㛧	（6）畈	（¢）！	
〔足111					
	Θ 发祖	（a）的㴽今		（e）．－．ay	
〔［通回〕					洪細細捾 +
		（c）．m籶．血虫	（c）平必坄置		
〔（區H）					
		（c）¢のN8	（c）fitutos	（＋）以我	

(3)

 (2)

(1)

英 語

筽 1 間

1．病院に着いたらすぐに私に電話しなさい。
Call me as soon as you（ ）the hospital．（2）have reached
as soon as 「～するとすぐに」 時を表す副詞節内では未来の内容も現在で表すので現在完了時制 を選ぶ。（1）は for が不要。

2．何もお話しすることはありません。私はむしろここにいたくない。
I have nothing to tell you．I＇d rather（ ）here．（3）not be

3．改訂された参考書はちょうど出版されたところです。
The revised reference book（ ）．（1）has just been published
just「ちょうど」 just のある完了形の受動態

4．彼女は立ち止まって，全く動こうとはしなかった。
She stopped still and（ ）not move at all．（2）would
would not 「どうしても～しようとしなかった」 will notには強い拒否を表す用法がある。

5．私は両親に海外留学させてほしいと頼む勇気がない。
I don＇t have the courage（ ）my parents to let me study abroad．（3）to ask名詞を修飾する to 不定詞。

6．彼女はあの試験がどんなものかわかっていない。
She doesn＇t know（ ）that test is like．（1）what
She doesn＇t know．に What is that test like？を間接疑問文にして加えた形

7．彼はどちらかというと白ワインより赤ワインが好きだ。
He rather likes red wine than（ ）．（1）white
white wine の wine は文の前半で既出なので省略可。wine は不可算名詞なので one は使えない。

8．その章をしつかり復習しなさい。さもないとまた思い違いしますよ（4）or
You have to review the chapter well（ ）you＇ll get it wrong again．
漼命令文＋or … 「～しなさい，さもないと・••

9．母は息子に友人のお見舞いに行ってきたかどうか尋ねた
The mother asked her son（ ）had visited his sick friend．（1）if
この if は「もし」ではなく「～かどうか」の意味。ask（人）if～「（人）に～かどうか尋ねる

10．彼女は身の上話をする人ではない。
She is the（ ）person to tell a personal story．（2）last
the last A to（原形動詞）「最後に（動詞）する A 」より「決して（動詞）しない A 」の意味となる

算 2 問

1．私のテニス仲間の一人は，高額なラケットをかなり多く持っている。（5）few One of my tennis friends have［quite a few expensive rackets］ quite a few～「かなり多くの～

2．彼の挑戦は失敗に終わるのではないかと私は思う。（2）result I think［his challenge will result in failure］
result in～「（結果的に）～に終わる

3．君には母親がどれほど心配していたかわからないだろう。（2）no You［would have no idea how worried］your mother was have no idea～「～を何も知らない」

4．娘はこのところ英語が急速に進歩した。（1）rapid My daughter［has made rapid progress in］her English recently make progress 「進歩する」

5．彼が家事を手伝らのは当然のことだと思ら（3）for
I［take it for granted that］he would help with the household chores．
take it for granted＋that 節 「（that 節）を当然のことと思う」

第3問

1．（1）
A：もう一杯お茶はいかがですか？
B：ありがとう。そうしたいところなのですが，約束があるのです。
（ ）
（1）おいとましなくては。
（2）あなたに連絡しなければなりません。
（3）もう一杯いただきます。
（4）まだここに居ます

2．（1）
A：すみませんが，駅へはどのように行けばよいか教えていただけませんか？
B ：（
（1）このまままっすぐ進んでください。
（2）そこでお会いしましょう
（3）私がついていきます。
（4）角を曲がったところで待機してください。

3．（3）
A：ママ，今日は帰りが遅くなるから。
B：夕食はどうするの？
A：（
（1）お肉はとても柔らかかった。
（2）遅すぎると思う。
（3）何か食べるもの買うよ。
4）多くの店は開店しません

4．（4）
A：ハリー，私たちが家を出るまであとどのぐらいある？
B：約 15 分だよ，お母さん。
A：あなたも一緒に行くなら，
B：必要なものはすべて荷造りしたから心配ないよ
（1）すぐにパスポートの申請をしてね。
（2）できるときにしっかり休んでおいた方がいいよ。
（3）私たちの乗る飛行機の予約をしてね。
（4）忘れ物の無いようにしてね。
5．（1）
A：昨日，砂浜にいてサーフィンをしていたんだ
B：何だって？そりゃだめだ！大雨で風も強かったじゃないか
A：そうなんだ，すごく波が高くてね。
B：（
A：さすがにまずかったようだな。
（1）よくそんな危険なことが出来たよね？
（2）雨が降っているからどらだっていうの？
（3）遠くから見ていたんだよね？
（4）泳ぐには最適の日だったよね？

第4問【全訳】

1 キログラムの鋼鉄と 1 キログラムの羽毛を測ると，それぞれ同じ質量になります。しかし，その体積は異なります。なぜなら羽毛は鋼鉄よりも軽い元素でできているので，はるかに大きな体積が必要に なるからです。同じ質量を作るにはより多くの原子が必要であり，その分，より大きな空間が必要にな るのです。
＜中 略＞

物質の一部を取り除くことによって，ある物体の質量を変えることが出来ます。学校からの帰宅後， カバンから本を取り出すと，そのカバンの質量は減ります。物質を足すことによっても質量は変化しま す。子どもが成長する際，体はより長い骨やより大きな臓器を作り出しています。食物のエネルギーを体を作るための物質に変えていくので，その子どもの質量は増えます。

形や場所，大きさを変えても質量は変化しないという事を知っておくことが重要です。あなたの体の質量は，ソファーで丸くなっているときも，思い切り高く背伸びをしている時も同じです。そして家にいる ときも，海辺にいるときも，学校にいるときも同じです。しかしあなたの質量は，朝起きた時と比べ，朝食を食べた後のほうが少し増えます。質量とは，ある物体がどれだけの物質を含んでいるかを示す基本的な尺度なのです。

重量はある物体にかかる重力を測る尺度です。それは物体の質量だけでなく，その場所にも依存しま す。したがって重量は実際には力を測る尺度とも言えます。アメリカ合衆国では大半の人達はポンドを使って重さを測ります。

例えば，あなたの体の質量が 40 キログラムだとしましょう。この質量は地球でも，月でも，木星でも，国際宇宙ステーションの中で浮いていても， 40 キログラムです。あなたの質量はどこにいても 40 キロ グラムです。しかしあなたの重量が場所によって違ってくるのは，それぞれ場所での重力のかかり方が違うからです。地球の表面では，A． 1 kg の質量は 2.2 ポンドの重さに相当します。なので，地球上で 40 kg の質量を持つ人は 40×2.2 ，つまり 88 ポンドの重さになります。

言葉はここで少しややこしくなるかもしれません。科学的には「医者は私の体重を 40 キロと測定しま した」とは言うべきではありません。なぜなら体重は質量と同じではないからです。同様に「医者は私の質量を 88 ポンドと測定しました」と言うのも正しくありません。しかし，私たちは皆，自分たちの質量 に対して地球の重力の強さが同じように掛かっているので，通常の言い方として質量と重量を同じよう に使うことが多いのです。それと同じように，大半の人は質量をポンドで，体重をキログラムで表現する ことに違和感はありません。

この混乱を避けるために，科学者は力を計測する際，標準的な単位を使用します。これはアイザック ニュートンに敬意を表してニュートンと呼ばれています。地球上では，B． 100 ニュートンの重さ（力） は，約 22 ポンドに相当します。これは，地球の重力が約 10 kg の質量をどれだけ強く引っ張るかを示す尺度です。

問3（1）
The child＇s mass will increase because they are transforming food energy into matter for their body．
（1）子どもの質量は，食物エネルギーを体を作るための物質に変えていくので増加する。
（2）子どもの質量は，体を作る物質が食物エネルギーを取り込んでいくので増加する。
（3）子どもの質量の増加は，体を作る物質が食物エネルギーによって置き換わることで起こる。
（4）子どもの質量の増加は，食物エネルギーを変換する物質が体内に蓄積するために起こる
\rightarrow transform A into B「AをBに変える」

問 4 （2）
It not only depends on the object＇s mass，but also on its location
（1）重量は，物体の質量にも，その置かれた場所によっても変わらない。
（2）重量は，物質の質量だけでなく，その置かれた場所にも依存する。
（3）重量は，物体の質量によって決まるが，その置かれた場所によっては決定しない
（4）重量は，物質の質量によっては定まることはないが，その置かれた場所によって定まる。
\rightarrow not only A but also B「A だけでなく B も
問5（1）
Let＇s say 「～としましょう」
（1）suppose「仮定してみよう」
（2）even so「たとえそうでも
（3）maybe「もしかしたら」
（4）by the way「ところで」

問6（3） 300
全訳の波線 \mathbf{A} より $1 \mathrm{~kg} \doteqdot 2.2 \mathrm{lb}$ なので $30 \mathrm{~kg} \doteqdot 66 \mathrm{lb}$ とわかる。また，波線 \mathbf{B} より $100 \mathrm{~N} \doteqdot 22 \mathrm{lb}$ なの で $30 \mathrm{~kg}(\fallingdotseq 66 \mathrm{lb}) \fallingdotseq 300 \mathrm{~N}$ が求まる。

問 7 （4）
（1）\times アメリカでは日常的にキログラムという単位を使う。
In the United States，most people measure weight in pounds．
「アメリカ合衆国では大半の人達はポンドを使って重さを測ります。」
（2）\times 科学的には重量と質量は同様に扱われる。
Scientifically，• ．．．＂because weight isn＇t the same as mass．
「科学的には・••・なぜなら体重は質量と同じではないからです。」
③ \times 人の質量は朝起きたときに少し増加している。
But your mass is a little bit more after you＇ve eaten breakfast，compared with when you first wake up in the morning．「しかし，質量は朝起きた時と比べ，朝食を食べた後のほうが少し増えます。」
（4）ニュートンという単位はアイザック・ニュートンに由来する。

第1問

（1） $9\left(x^{2}+2 x\right)^{2}-19\left(x^{2}+2 x\right)-24=9 \mathrm{X}^{2}-19 \mathrm{X}-24\left(\mathrm{X}=x^{2}+2 x\right.$ とおく $)$

$$
\begin{aligned}
& =(9 \mathrm{X}+8)(\mathrm{X}-3)=\left(9 x^{2}+18 x+8\right)\left(x^{2}+2 x-3\right) \\
& =(3 x+2)(3 x+4)(x+3)(x-1) \\
& =\left(x+\frac{3}{ア}\right)\left(x-\frac{1}{4}\right)\left(\frac{3}{\square} x+\frac{2}{\text { I }}\right)\left(\frac{\sqrt{\text { ® }}}{\text { (ウ) }} x+\sqrt[4]{4}\right)
\end{aligned}
$$

（2）$x=\sqrt{\frac{7+4 \sqrt{3}}{7-4 \sqrt{3}}}=\sqrt{\frac{(7+4 \sqrt{3})^{2}}{(7-4 \sqrt{3})(7+4 \sqrt{3})}}=\sqrt{(7+4 \sqrt{3})^{2}}=7+4 \sqrt{3}$
$y=\sqrt{\frac{7-4 \sqrt{3}}{7+4 \sqrt{3}}}=\sqrt{\frac{(7-4 \sqrt{3})^{2}}{(7+4 \sqrt{3})(7-4 \sqrt{3})}}=\sqrt{(7-4 \sqrt{3})^{2}}=7-4 \sqrt{3}$
よって，$x+y=(7+4 \sqrt{3})+(7-4 \sqrt{3})=$ 功，$x y=(7+4 \sqrt{3})(7-4 \sqrt{3})=\frac{1}{\eta}$
$\frac{1}{2}\left(x^{2}+y^{2}\right)=\frac{1}{2}\left\{(x+y)^{2}-2 x y\right\}=\frac{1}{2}\left(14^{2}-2 \cdot 1\right)=\underset{\text { ケコ }}{97}$
（3） $\cos ^{2} \theta=\frac{5 \sin \theta-1}{2} \Leftrightarrow 2 \cos ^{2} \theta-5 \sin \theta+1=0$
$\Leftrightarrow 2\left(1-\sin ^{2} \theta\right)-5 \sin \theta+1=0\left(\cos ^{2} \theta=1-\sin ^{2} \theta\right)$
$\Leftrightarrow 2 \sin ^{2} \theta+5 \sin \theta-3=0$
$\Leftrightarrow(2 \sin \theta-1)(\sin \theta+3)=0$
ここで $0^{\circ} \leqq \theta \leqq 180^{\circ}$ より， $0 \leqq \sin \theta \leqq 1$ だから， $\sin \theta=\frac{1}{2}$ よって，$\theta=\frac{30}{}{ }^{\circ}, \frac{150}{\text { サジ }}$
（4）条件より， $\mathrm{PA}=4, \mathrm{~PB}=\mathrm{PA}+2 \mathrm{OA}=4+2 \cdot 10=24, \mathrm{PC}=6, \mathrm{PD}=\mathrm{PC}+2 \mathrm{CH}=6+2 x$ であるから，方べきの定理より，
$\mathrm{PA} \cdot \mathrm{PB}=\mathrm{PC} \cdot \mathrm{PD} \quad \therefore 4 \cdot 24=6 \cdot(6+2 x) \quad$ よって，$x=5$ $\triangle \mathrm{OCH}$ において，三平方の定理より，
$\mathrm{OC}^{2}=\mathrm{CH}^{2}+\mathrm{OH}^{2} \quad \therefore 10^{2}=x^{2}+y^{2} \quad$ よって，$y=\sqrt{10^{2}-5^{2}}=\sqrt[5]{f} \sqrt{\frac{3}{3}}$
方べきの定理より，
$\mathrm{PA} \cdot \mathrm{PB}=\mathrm{PE}^{2} \quad \therefore 4 \cdot 24=z^{2} \quad$ よって，$z=\sqrt{96}=\frac{4}{\bar{T}} \sqrt{6}$

第2問（1）
i）条件より，$\angle \mathrm{PAQ}=60^{\circ}, \angle \mathrm{BAQ}=60^{\circ}, \angle \mathrm{BCQ}=60^{\circ}$ ， であるから， $\mathrm{S}=(\triangle \mathrm{APQ}$ の面積 $)=\frac{1}{2} \cdot \mathrm{AP} \cdot \mathrm{AQ} \cdot \sin \angle \mathrm{PAQ}$

$$
=\frac{1}{2} \cdot t \cdot(6-t) \cdot \sin 60^{\circ}=-\frac{\sqrt{3}}{\frac{\sqrt{4}}{\uparrow}}\left(t^{2}-\frac{\sqrt{6}}{ウ} t\right)
$$

$T=(\triangle B P Q$ の面積 $)$
$=(\triangle \mathrm{ABC}$ の面積 $)-(\triangle \mathrm{APQ}$ の面積 $)-(\triangle \mathrm{BCQ}$ の面積 $)$

$=\frac{1}{2} \cdot \mathrm{AB} \cdot \mathrm{AC} \cdot \sin \angle \mathrm{BAQ}-\frac{1}{2} \cdot \mathrm{AP} \cdot \mathrm{AQ} \cdot \sin \angle \mathrm{PAQ}-\frac{1}{2} \cdot \mathrm{BC} \cdot \mathrm{CQ} \cdot \sin \angle \mathrm{BCQ}$ $=\frac{1}{2} \cdot 6 \cdot 6 \cdot \sin 60^{\circ}-\frac{1}{2} \cdot t \cdot(6-t) \cdot \sin 60^{\circ}-\frac{1}{2} \cdot 6 \cdot t \cdot \sin 60^{\circ}=\frac{\text {（ア）}}{\frac{\sqrt{3}}{\frac{4}{4}}\left(t^{2}-\sqrt{12 t} t+\sqrt{36}\right)}$ $\mathrm{U}=(\triangle \mathrm{CPQ}$ の面積 $)=\frac{1}{2} \cdot \mathrm{CQ} \cdot \mathrm{PH}=\frac{1}{2} \cdot t \cdot \frac{\sqrt{3}}{2} t=\frac{\frac{\sqrt{\text {（ア）}}}{\sqrt{4}}}{(\nmid \text {（ })} t^{2}$
ii）i）より， $\mathrm{S}=-\frac{\sqrt{3}}{4}\left(t^{2}-6 t\right)=-\frac{\sqrt{3}}{4}(t-3)^{2}+\frac{9}{4} \sqrt{3}$ よって， $0 \leqq t \leqq 6$ における S のグラフは右図になるから S が最大になるのは，$t=$ ク ク のときであり， S の最大値は $\frac{\sqrt{9 \sqrt{3}}}{\frac{4}{4}}$

iii）i）より， $\mathrm{S}=-\frac{\sqrt{3}}{4}\left(t^{2}-6 t\right)$ だから， $\mathrm{S} \geqq \frac{5 \sqrt{3}}{4}$ のとき， $-\frac{\sqrt{3}}{4}\left(t^{2}-6 t\right) \geqq \frac{5 \sqrt{3}}{4} \Leftrightarrow t^{2}-6 t+5 \leqq 0 \Leftrightarrow(t-1)(t-5) \leqq 0$ よって，求める t の値の範囲は， $11 \leqq t \leqq 5$
iv）i）より， $\mathrm{S}=-\frac{\sqrt{3}}{4}\left(t^{2}-6 t\right), \mathrm{T}=\frac{\sqrt{3}}{4}\left(t^{2}-12 t+36\right), \mathrm{U}=\frac{\sqrt{3}}{4} t^{2}$ だから， $2 \mathrm{~S}+3 \mathrm{~T}+2 \mathrm{U}=2 \cdot\left\{-\frac{\sqrt{3}}{4}\left(t^{2}-6 t\right)\right\}+3 \cdot \frac{\sqrt{3}}{4}\left(t^{2}-12 t+36\right)+2 \cdot \frac{\sqrt{3}}{4} t^{2}$ $=\frac{\sqrt{3}}{4}\left(-2 t^{2}+12 t+3 t^{2}-36 t+108+2 t^{2}\right)=\frac{3}{4} \sqrt{3}\left(t^{2}-8 t+36\right)$ $=\frac{3}{4} \sqrt{3}(t-4)^{2}+15 \sqrt{3}$
よって， $2 \mathrm{~S}+3 \mathrm{~T}+2 \mathrm{U}$ が最小になるのは，$t=$ 苂のときであり，そのときの最小値は $15 \sqrt{3}$
v）i）より， $\mathrm{S}=-\frac{\sqrt{3}}{4}\left(t^{2}-6 t\right), \mathrm{T}=\frac{\sqrt{3}}{4}\left(t^{2}-12 t+36\right), \mathrm{U}=\frac{\sqrt{3}}{4} t^{2}$ だから， $3 \mathrm{~S}+\mathrm{T}=7 \mathrm{U}-3 \sqrt{3}$ のとき， $3 \cdot\left\{-\frac{\sqrt{3}}{4}\left(t^{2}-6 t\right)\right\}+\frac{\sqrt{3}}{4}\left(t^{2}-12 t+36\right)=7 \cdot \frac{\sqrt{3}}{4} t^{2}-3 \sqrt{3}$ $\Leftrightarrow-3 t^{2}+18 t+t^{2}-12 t+36=7 t^{2}-12 \Leftrightarrow 9 t^{2}-6 t-48 \Leftrightarrow 3 t^{2}-2 t-16=0$
$\Leftrightarrow(3 t-8)(t+2)=0 \quad 0 \leqq t \leqq 6$ より $t=\frac{8}{3}$
よって，求める t の値は，$\quad t=\frac{8 \text { 8 }}{3 \text { 夕 }}$
（2）
得点データの表から， 4 つのクラス A, B, C, D の得点データについて，次のことがわかる。

| クラス | 最小値 | 第1四分位数 | 中央値 | 第3四分位数 | 最大値 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | 1 | 3 | 4.5 | 6 | 8 |
| B | 0 | 1.5 | 5 | 8.5 | 10 |
| C | 3 | 5.5 | 7 | 8 | 10 |
| D | 0 | 1.5 | 3 | 5.5 | 10 |

（1）～8の箱ひげ図から，（1）～8のデータについて，次のことがわかる。

選択肢	最小値	第1四分位数	中央値	第 3 四分位数	最大値
（1）	2	3.5	5	6.5	8
（2）	0	1.5	3	5.5	10
3	1	3	4.5	6	8
(4)	3	5.5	7	8	10
（5）	0	1.5	5	8.5	10
6	0	4.5	7	8.5	10
（7）	1	2	3	5	8
8	1	4	5	6	9

5 種類のデータの値（最小値•第 1 四分位数•中央値•第 3 四分位数•最大値）をそれぞれ比較して，すべてが一致しているものを選択すると，

Aの箱ひげ図は 3 チ
Bの箱ひげ図は 5
Cの箱ひげ図は 4 テ
Dの箱ひげ図は 2 ト

【解説】

（1）•i ）～iv）については，三角形の辺上の動点がつくる三角形の面積の問題であり，頻出問題である。
（2）• 4 つのクラス $\mathrm{A} \sim \mathrm{D}$ と選択肢（1）～8のそれぞれのデータの最大値•最小値•中央値や第 1 四分位数•第 3 四分位数を比較すると容易にあてはまるものがわかる。

第 3 問

（1）
i）条件より， $\mathrm{AB}=12, \mathrm{BP}=4, \angle \mathrm{ABP}=60^{\circ}$ だから，$\triangle \mathrm{ABP}$ において余弦定理より $\mathrm{AP}^{2}=\mathrm{AB}^{2}+\mathrm{BP}^{2}-2 \cdot \mathrm{AB} \cdot \mathrm{BP} \cdot \cos \angle \mathrm{ABP}=12^{2}+4^{2}-2 \cdot 12 \cdot 4 \cdot \cos 60^{\circ}=112$条件より， $\mathrm{AD}=12, \mathrm{DQ}=4, \angle \mathrm{ADQ}=60^{\circ}$ だから，$\triangle \mathrm{ADQ}$ において余弦定理より $\mathrm{AQ}^{2}=\mathrm{AD}^{2}+\mathrm{DQ}^{2}-2 \cdot \mathrm{AD} \cdot \mathrm{DQ} \cdot \cos \angle \mathrm{ADQ}=12^{2}+4^{2}-2 \cdot 12 \cdot 4 \cdot \cos 60^{\circ}=112$条件より， $\mathrm{BP}=4, \mathrm{BQ}=8, \angle \mathrm{PBQ}=60^{\circ}$ だから，$\triangle \mathrm{BPQ}$ において余弦定理より $\mathrm{PQ}^{2}=\mathrm{BP}^{2}+\mathrm{BQ}^{2}-2 \cdot \mathrm{BP} \cdot \mathrm{BQ} \cdot \cos \angle \mathrm{PBQ}=4^{2}+8^{2}-2 \cdot 4 \cdot 8 \cdot \cos 60^{\circ}=48$ よって，線分 $\mathrm{AP}, \mathrm{AQ}, \mathrm{PQ}$ の長さは， $\mathrm{AP}=\mathrm{AQ}=\frac{4}{\boldsymbol{4}} \sqrt{\frac{7}{7}}, \mathrm{PQ}=\frac{\sqrt{4}}{(\boldsymbol{\jmath})} \sqrt{\frac{\sqrt{3}}{ウ}}$
ii）i）より $\mathrm{AP}=\mathrm{AQ}=4 \sqrt{7}, ~ \mathrm{PQ}=4 \sqrt{3}$ だから，$\triangle \mathrm{APQ}$ において余弦定理より $\cos \angle \mathrm{PAQ}=\frac{\mathrm{AP}^{2}+\mathrm{AQ}^{2}-\mathrm{PQ}^{2}}{2 \cdot \mathrm{AP} \cdot \mathrm{AQ}}=\frac{(4 \sqrt{7})^{2}+(4 \sqrt{7})^{2}-(4 \sqrt{3})^{2}}{2 \cdot 4 \sqrt{7} \cdot 4 \sqrt{7}}=\frac{176}{224}=\frac{11}{14}$ エオ $\sin \angle \mathrm{PAQ}=\sqrt{1-\cos ^{2} \angle \mathrm{PAQ}}=\sqrt{1-\left(\frac{11}{14}\right)^{2}}=\sqrt{\frac{75}{196}}=\frac{\text { 力 } \sqrt{5} \sqrt{3}}{14}$
iii）i），ii）より， $\mathrm{AP}=\mathrm{AQ}=4 \sqrt{7}, \sin \angle \mathrm{PAQ}=\frac{5 \sqrt{3}}{14}$ だから，三角形の面積の公式より $\mathrm{S}=\frac{1}{2} \cdot \mathrm{AP} \cdot \mathrm{AQ} \cdot \sin \angle \mathrm{PAQ}=\frac{1}{2} \cdot 4 \sqrt{7} \cdot 4 \sqrt{7} \cdot \frac{5 \sqrt{3}}{14}=\underset{\text { クケ }}{20} \sqrt{\sqrt{3}}$
iv）i），ii）より， $\mathrm{PQ}=4 \sqrt{3}, \sin \angle \mathrm{PAQ}=\frac{5 \sqrt{3}}{14}$ だから，$\triangle \mathrm{APQ}$ において正弦定理より $\frac{\mathrm{PQ}}{\sin \angle \mathrm{PAQ}}=2 \mathrm{R}$ よって， $\mathrm{R}=\frac{4 \sqrt{3}}{2 \cdot \frac{5 \sqrt{3}}{14}}=\frac{28}{\frac{5}{5}}$ コサ
v）正四面体 ABCD と三角錐 ABPQ は高さが等しいから，
$\mathrm{V}_{1}: \mathrm{V}_{2}=(\triangle \mathrm{BCD}$ の面積）$:(\triangle \mathrm{BPQ}$ の面積）
$=\frac{1}{2} \cdot \mathrm{BC} \cdot \mathrm{BD} \cdot \sin \angle \mathrm{CBD}: \frac{1}{2} \cdot \mathrm{BP} \cdot \mathrm{BQ} \cdot \sin \angle \mathrm{PBQ}$
$=12 \cdot 12: 4 \cdot 8$
$=\frac{9}{8}: \frac{2}{2}$
（2）
点 P が，反時計回りに移動した回数を x ，時計回りに移動した回数を y とする。
i）点 P が 4 回の移動後に A にいるのは，$(x, y)=(2,2)$ のときであるから，求める確率は，${ }_{4} \mathrm{C}_{2} \cdot\left(\frac{1}{2}\right)^{2} \cdot\left(\frac{1}{2}\right)^{2}=\frac{6}{16}=\frac{3 \text { セ }}{\sqrt{8} \text { ，}}$
ii）点 P が 5 回の移動後に D にいるのは，$(x, y)=(4,1),(1,4)$ のときであるから，求める確率は，${ }_{5} \mathrm{C}_{1} \cdot\left(\frac{1}{2}\right)^{4} \cdot \frac{1}{2}+{ }_{5} \mathrm{C}_{4} \cdot \frac{1}{2} \cdot\left(\frac{1}{2}\right)^{4}=\frac{5}{32}+\frac{5}{32}=\frac{5 \text { 夕 }}{16 \text { チツ }}$
iii）点 P が 6 回の移動後にAにいるのは，$(x, y)=(6,0),(3,3),(0,6)$ のときで あるから，求める確率は，$\left(\frac{1}{2}\right)^{6}+{ }_{6} \mathrm{C}_{3} \cdot\left(\frac{1}{2}\right)^{3} \cdot\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{6}=\frac{1}{64}+\frac{20}{64}+\frac{1}{64}=\frac{11}{32}$

【解 説】
（1）•i）～iv）については，個々の問題は平面図形の問題となることから，余弦定理正弦定理や三角形の面積の公式を用いて解く最頻出タイプの基本問題である。
v）については，高さが共通な 2 つの立体図形の体積比は底面積比に等しいことに気づけば，高さを求める必要はない。面積比についても， 2 辺の長さの積の比にな ることを用いれば，さらに計算量を減らすことができる。
（2）•i ）～iii）については，点Pが複数回の移動で正六角形の各項点に移動する確率は反復試行の公式を用いて計算すればよい。

第1問

すい臓が分泌する血糖值を下げる作用を持つホルモンのインスリンと，イン スリンの遺伝子とインスリンが分泌されるまでの過程についての出題。生物基䂣』の恒常性と，『生物』の遺伝子の発現及び生命と物質にまたがる複合問題である。各単元で履修した内容（図示を含む）の理解，考察力を試す問題と なっている。一見難度の高い問題のように見えるが，丁寧に問題文•設問を読 めば，ほぼ基礁知戠で答えられるものばかりである。

問1 インスリンを分泌している細胞が該当する。ランダルハンス島のB細胞 である。A細胞が分泌するグルカゴンとともに，それぞれのはたらきを覚え ておく必要がある。なお，すい臓はこれらのホルモンを分泌する内分泌器官 （腺）であるとともに，消化酵素をすい管から十二指腸に分泌する外分泌器官でもある。分泌される消化酵素は 3 種類（アミラーゼーデンプン・トリプ シンータンパク質・リパーゼー脂質）である。

問2（1）RNAの加工の仕組みについて，基本的な理解を問うている。 インスリン遺伝子からイントロンの領域は除かれ，エクソンの領域が つながれて mRNA となる。図1 でインスリン遺伝子の 3 つのブロッ ク（エクソン：グレーと白の帯状になっている部分）がつながり mRNA となっていることがわかる。イントロン（黒い太線の部分）は 2 組が除かれている。
（2）転写された後にイントロンの領域が除かれる過程をスプライジング という。

問3 S－S 結合はタンパク質の立体構造を支える力として，最も強いものであ る。アミノ酸の名称はシステインで，システインの側鎖間に生じる共有結合 である。

問4（1）タンパク質が正しい立体構造を取る過程をフォールディング（タン パク質の折りたたみ）という。
（2）フォールディングの過程で助けに入るタンパク質をシャペロンとい う。

問5 リード文 $4 \sim 5$ 行目の『アミノ基のある方の末端（＝アミノ末端またはN末端）から 24 個のアミノ酸からなるシグナルペプチドと呼ばれる部分が切断除去され』といら説明と図 1 から，図 2 において，切断されたシグナル ペプチドと B 鎖の左側が続いていることを読み取る。さらに，シグナルペプ チドから切り離された B 鎖の左側がアミノ末端となることも読み取れる。次に，図 1 のプロインスリンの構造から， B 鎖 $\rightarrow \mathrm{C}$ ペプチド $\rightarrow \mathrm{A}$ 鎖の順 になっており，ペプチドは常に左端の先頭がアミノ末端（ NH_{2} のある方 $=$ N 末端）となるようになっている。よって，答えは $\mathrm{C}_{\mathrm{e}} \rightarrow \mathrm{b}$ 」となる。

問 6 小胞と細胞膜の融合による物質の分泌をエクソサイトーシス，物質の取 り込みをエンドサイトーシスという。

第2問

『生物』から呼吸のクエン酸回路に関する問題であるが，教科書とは違って各成分の名前は控え目に表示されているので，難しく感じた受験生が多かったと思われる。クエン酸回路が単なる暗記物でなく，各成分の変化と物質の出入り の関連を理解しているかが問われている。

問1 ATPの合成の形式は，解糖系とクエン酸回路では「基質レベルのリン酸化」といい，ミトコンドリアの電子伝達系では「酸化的リン酸化」という。 なお，光合成では葉緑体で「光リン酸化」が行われている。

問 $2 \mathrm{NADH}+\mathrm{H}^{+}$が合成される段階を問らている。成分の化学式から 2 H が減少 する段階が該当する。ただし， FADH_{2} の合成も 2 H の減少を伴らが，こち らは図に明示されている。また， $\mathrm{H}_{2} \mathrm{O}$ や $\mathrm{H} \cdot \mathrm{CoA}$ の出入りも勘案しなけれ ばならない。
エ： $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7} \rightarrow \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{5}+\mathrm{CO}_{2}+2 \mathrm{H}^{+}$，
才： $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{5}+\mathrm{H} \cdot \mathrm{CoA} \rightarrow \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{3} \cdot \mathrm{CoA}+\mathrm{CO}_{2}+2 \mathrm{H}^{+}$，
ケ： $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5} \rightarrow \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}+2 \mathrm{H}^{+}$
が該当する。

問 $3 \mathrm{NADH}+\mathrm{H}^{+}$からは $3 \mathrm{ATP}, \mathrm{FADH}_{2}$ からは 2 ATP が最大合成される。電子伝達系の反応式より， $10 \mathrm{NADH}+\mathrm{H}^{+}$と $2 \mathrm{FADH}_{2}$ から最大 34 ATP が生成す る。よって， $10 \mathrm{X}+2 \mathrm{Y}=34$ より， 1 分子の NADH $+\mathrm{H}^{+}$からは 3 分子の ATP が， 1 分子の FADH_{2} からは 2 分子の ATP が生産されることが分かる。

問 4 （1）水素原子の総数という設問に戸惑ったかもしれない。 $\mathrm{NADH}+\mathrm{H}+$ も FADH_{2} も電子伝達系には 2 H を送る。 $\mathrm{NADH}+\mathrm{H}^{+}$の H^{+}は分かり難いかも知れないが， $\mathrm{NAD}^{+}+2 \mathrm{H} \rightarrow \mathrm{NADH}+\mathrm{H}^{+}$と理解しておれば 2 個の水素原子を伝達していることが分かる。問 2 に $\mathrm{NADH}+\mathrm{H}^{+}$はクエン酸回路の 3 か所 で合成されることが示されており，計 6 個の水素原子が生じることがわか る。よって，合計 8 個の水素原子が電子伝達系に送られる。
（2）ATP の合成個数は，問 2 にあるように $\mathrm{NADH}+\mathrm{H}^{+}$は 3 カ所で生じる。 よって， 3 個の NADH からは 9 個の ATP が合成される。また， FADH_{2} は図 3 より 1 カ所で生じ， 1 個の FADH_{2} からは 2 個の ATP が合成され る。なお，図 3 より 1 個のATP が生じるので，合計 12 個の ATP が合成 される。

問5 クエン酸回路の各成分の化学式の炭素の数の変化に注目する。すなわち， CO_{2} の放出を反映している部分である。エとオが該当する。（問 2 の反応式参照）

第3問
『生物』より減数分裂を主にした細胞分裂に関する標準的な問題。
問 1 遺伝子座，ホモやヘテロの用語を問う問題である。 ア は遺伝子座，
\qquad はホモ接合体，ウ はヘテロ接合体となる。通常の遺伝では，遺伝子は AA や aa，Aa などの記号を使用するが，塩基配列は遺伝子 A と A，a と a では同じであり，Aと a では異なることに注意が必要である。

問2（1）減数分裂によって細胞当たりの DNA の量の変化を問う問題である。間期で DNA の複製が起こり，細胞 1 個当たりの DNA 量は複製前の 2 倍になる。減数分裂では 2 回の分裂が連続して起こるが，この間に DNA の複製は起こらない。よって，第二分裂後の生殖細胞は，体細胞分裂直後の母細胞がもつ DNA 量の半分になる。
（2）核相を問われることは少ないので，戸惑うかも知れない。
核相とは，最小限必要な染色体のセットがいくつ核内に含まれているかを

示している。ヒトの体細胞の場合， 23 本の染色体が最小限必要な染色体の セットで，父母から異なる 1 セットずつを受けついで， 1 セットずつ 2 種類 が核内にある。複相（ 2 n ）という。
図では生殖母細胞に左（A）と右（B）の 2 種類の染色体が 1 本ずつ描かれてい るが，複相 $(2 n)$ の $n=1$ の場合である。
減数分裂の前期 S 期に DNA は倍増するが，コピーなので，DNA 量は倍増するが染色体の種類は変化しない。つまり， 2 セットずつ 2 種類となるの で，核相は複相（ 2 n ）のままである。
第一分裂期では，複製された染色体と複製元の染色体が結合した姉妹染色体は，相同染色体の姉妹染色体と結合して二価染色体を形成する。第一分裂 により，姉妹染色体が娘細胞に受け継がれる。つまり，相同染色体の姉妹染色体が各々の娘細胞に受け継がれるので，核相は半減して単相（ n ）となって いる。DNA 量は倍増したものが半減するので，減数分裂開始前の元の量に減っている。
図では，第一分裂により，（A）の姉妹染色体を持つ細胞と（B）の姉妹染色体 を持つ娘細胞が描かれている。DNA 量は染色体 2 本分だが，種類は赤また は青の 1 種頪だけになっている。つまり，核相は半減して単相（n）となって いる。
第二分裂で相同染色体の姉妹染色体は分離して各々が生殖細胞に受け継 がれるので，この時点で DNA 量は半減するが，核相は単相（ n ）のままである。

問3 同じ染色体上にある異なる遺伝子がそろって配偶子に伝えられる場合は「連鑟」しているという。別の染色体上にある遺伝子同士は「独立」して配偶子に伝えられる。

問4 相同染色体の部分的交換は染色体の「乗換え」と呼ばれる。染色体の乗換 えの結果，遺伝子の「組換え」が起こる。「乗換え」と「組換え」は一般に は混同されて使用されることが多いが，高校の生物では厳密に使い分けら れている。

第4問

『生物基䂣』の恒常性の単元から循環器と血液に関する問題である。設問によ っては，選択肢に紛らわしいものが含まれており，それぞれしつかり吟味しな ければならない。

問1 血管と心臓だけに血液が流れる閉鎖血管系は脊椎動物や無脊椎動物の一部に見られる。閉鎖血管系は開放血管系と比べて血圧を高く保てる利点が

ある。なお，哺乳類と鳥類の心臓は 2 心房 2 心室になっており，肺循環と体循環の血液が混ざることがないので効率的な酸素の運搬が可能となってい る。

問2 血球のうち，白血球は毛細血管の血管壁を通過して組織などで免疫活動を行う。
静脈は血液の逆流を防ぐための弁をもち，心臓も内部に血液の逆流を防ぐ弁をもつ。また，リンパ管もリンパ液の逆流を防ぐ弁をもつ。

問3 血液は，液体成分の血しょうが約 55% を占め，そのうちの約 90% が水で ある。試験管などに採決した血液を放置すると，血球やフィブリノーゲンな どのたんぱく質は沈殿し凝固（血餅）する。そのとき上澄みにできる淡黄色 の液体成分を血清という。血清は血しょうからフィブリノーゲンを除いた ものである。
一般的に，血液中のグルコース濃度は約 0.1% ，ナトリウムイオン濃度は約 0.32% である。血しょう中に多く含まれるアルブミンや血液凝固に関連 するたんぱく質などは肝臓で合成されている。
血しょうは，栄球体からボーマン囊に濾過され原尿になる。通常，血しょ ら中のイオンや低分子量の物質はここで濾過されるので，血しょうと原尿で の濃度はほぼ同じとなるが，タンパク質などの大きな物質は濾過されず，す なわち，血しょうと原尿の成分は異なる。

問4（1）赤血球，白血球，血小板の血液 $1 \mathrm{~mm}^{3}$ 当たりの個数は，赤血球＞血小板＞白血球で，それぞれの桁数が違う。概数は，赤血球が数百万（450 $\sim 500)$ 万個 $>$ 血小板が数十万（ $20 \sim 50$ ）万個＞白血球は数千（ $5 \sim 8$ ）千個である。
（2）フィブリンは血液凝固（血餅形成）を引き起こすタンパク質で，血液中にはフィブリノーゲンとして肝臓で合成され，分泌される。
組織が傷つけられるなどして出血が起こると，傷ついた組織などから分泌される血液凝固因子やカルシウムイオンなどのはたらきで血液凝固反応が起こる。

一連の反応でプロトロンビンが酵素作用をもつトロンビンとなり，ト ロンビンのはたらきで血液中に溶解していたフィブリノーゲンがフィブ リンに変換され繊維状に凝集し，赤血球などを巻き込んで血餅を形成し出血が止まる。

血小板は血液凝固因子の一つをもっており，血液凝固反応を促進する

はたらきがある。
古くなった赤血球は脾臓だけでなく肝臓でも処理（破壊）される。成人 の赤血球には核は存在しないが，魚類，鳥類，両生類の赤血球には核が存在する。また，ヒトの胎児の赤血球は，骨髄以外の組織（肝臓など）に由来する時期もある。

問5 動脈血は，肺を通過して酸素を多く含んだ血液を指す。静脈の内で肺静脈 だけに動脈血が流れている。逆に，肺動脈は全身から集められた酸素の少な い静脈血が流れる。心臓から出ていく血液が流れる血管を動脈，心臓に入つ てくる血液が流れる血管を静脈と呼ぶので，肺循環だけ血管名と血液の名称が違うことに注意を要する。また，肺動脈は心臓の右心室から出て，肺静脈は左心房に入る。

問 6 ヘモグロビン分子は α 鎖 2 本と B 鎖 2 本の 4 本のペプチドからなり，ペ プチド間に S－S 結合は含まれていない。
酸素分子はヘムと呼ばれる鉄イオンを含む分子に結合し，ペプチド部分 （アミノ酸部分）は酸素とは結合しない。
酸素と結合したへモグロビンの割合と酸素濃度（分圧）との関係を表した曲線は酸素解離曲線と呼ぶ。

。 \ominus 开囬目

 ரコ\｜，Υ 「

	7	
	\bigcirc	
	－	

ज	\square	■
		くすざパがさぜささ」

。边涨

 \qquad

 \qquad
\qquad

 \qquad

」ヘ」，Nざ

。罚東め゙「こざかた」

（1）平算析		\oplus	策臅罒1	＠		（1）	果山	\ominus	濁溫	
¢車算析	过	\oplus	HF部	＠	ミ交	（1）	锑兩	\ominus		N
（1）平算乹	xilist	\oplus	䀶浼	＠			临斟	Θ		Ξ

> 。罩下

[^0]:

 ## 田相化进

[^1]:

